
Qtenon: Towards Low-Latency Architecture Integration for
Accelerating HybridQuantum-Classical Computing
Chenning Tao
tcn@zju.edu.cn

Zhejiang University
Hangzhou, China

Liqiang Lu∗
liqianglu@zju.edu.cn
Zhejiang University
Hangzhou, China

Size Zheng
zheng.size@bytedance.com

ByteDance Seed
Beijing, China

Li-Wen Chang
liwen.chang@bytedance.com

ByteDance Seed
Beijing, China

Minghua Shen
shenmh6@mail.sysu.edu.cn

Sun Yat-sen University
Guangzhou, China

Hanyu Zhang
hyzz@zju.edu.cn

Zhejiang University
Hangzhou, China

Fangxin Liu
liufangxin@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Kaiwen Zhou
kaiwenzhou@zju.edu.cn
Zhejiang University
Hangzhou, China

Jianwei Yin∗
zjuyjw@zju.edu.cn
Zhejiang University
Hangzhou, China

Abstract
Hybrid quantum-classical algorithms have shown great promise in
leveraging the computational potential of quantum systems. How-
ever, the efficiency of these algorithms is severely constrained by
the limitations of current quantum hardware architectures. These
architectures, which typically feature a decoupled design, lack both
hardware support for low-latency communication and software
support for fine-grained optimization.

In this paper, we propose Qtenon, a tightly coupled system for
efficient hybrid quantum-classical algorithm acceleration. Qtenon
is composed of both hardware part and software part. To enable
efficient communication and computation, the hardware part pro-
vides a unified memory hierarchy, an efficient quantum controller,
as well as a multi-stage processing pipeline. The unified memory
hierarchy functions as a communication buffer between host and
quantum accelerators, with dedicated data paths and interfaces pro-
vided by the quantum controller. The multi-stage pipeline leverages
hardware pipelines to fully exploit parallelism. To program hybrid
quantum-classical algorithms on the hardware, our software part
provides a set of instructions for data communication and compu-
tation. The instructions also enable fine-grained synchronization
and efficient scheduling for quantum-host interaction. We design
Qtenon as a RISC-V extended chip and implement it using Chisel. In
evaluation, we achieve up to 14.9× end-to-end speedup compared
to state-of-the-art work for hybrid quantum-classical algorithms.

CCS Concepts
• Hardware→ Quantum technologies; • Computer systems
organization→ Heterogeneous (hybrid) systems.
∗Corresponding Author

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731087

Keywords
Quantum computing, Instruction set architecture (ISA), Quantum-
classical hybrid computing, RISC-V

ACM Reference Format:
Chenning Tao, Liqiang Lu, Size Zheng, Li-Wen Chang, Minghua Shen,
Hanyu Zhang, Fangxin Liu, Kaiwen Zhou, and Jianwei Yin. 2025. Qtenon:
Towards Low-Latency Architecture Integration for Accelerating Hybrid
Quantum-Classical Computing. In Proceedings of the 52nd Annual Interna-
tional Symposium on Computer Architecture (ISCA ’25), June 21–25, 2025,
Tokyo, Japan. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3695053.3731087

1 Introduction
Quantum computing has demonstrated great potential for acceler-
ating complex algorithms that are inefficient on classical comput-
ers, such as combinatorial optimization [18] and quantum chem-
istry simulations [25]. To harness this potential, numerous hybrid
quantum-classical algorithms [19, 29] have been proposed. How-
ever, current quantum computing systems struggle to execute these
algorithms efficiently. Figure 1 (a) illustrates the performance of
current quantum hardware architecture by evaluating three hy-
brid quantum-classical algorithms. The results indicate that the
quantum execution contributes only a minor fraction of the over-
all runtime. For example, the quantum computation of 64-qubit
Variational Quantum Eigensolver (VQE) [32] accounts for just 7.9%
of the total runtime. Our profiled result in Figure 1(b) shows that
the runtime is dominated by classical computation on the host and
the communication between quantum and host. Over 90% of the
runtime comes from communication, computation, and repeated
compilations, underscoring a substantial space for performance
enhancements.

The inefficiency of current quantum computing systems [13–15]
arises from their decoupled architecture design and suboptimal
software scheduling. In these systems, the architecture comprises a
host processor and a quantum accelerator, with their interaction

https://orcid.org/0000-0002-9221-0317
https://orcid.org/0000-0002-3801-6847
https://orcid.org/0000-0002-9471-1780
https://orcid.org/0000-0001-6515-6733
https://orcid.org/0000-0003-4747-8020
https://orcid.org/0009-0007-5127-5783
https://orcid.org/0000-0002-8769-293X
https://orcid.org/0009-0005-1017-8878
https://orcid.org/0000-0003-4703-7348
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731087
https://doi.org/10.1145/3695053.3731087
https://doi.org/10.1145/3695053.3731087

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chenning Tao, Liqiang Lu, Size Zheng, Li-Wen Chang, Minghua Shen, Hanyu Zhang, Fangxin Liu, Kaiwen Zhou, and Jianwei Yin

16.4 15 13.7
7.9 7 6.3

QAOA VQE QNN
QAOA VQE QNN

Pe
rc

en
ta

ge
 (%

)

20

40

60

80

100

645648#qubit

Quantum:
Classical:

4.4%
9%

7.9%

65.1%

(a) (b)

78.7%

Quantum execution

Pulse generation

Host computation

Quantum-host comm.

Figure 1: (a) The percentage of quantum and classical exe-
cution time for three hybrid quantum-classical algorithms:
QAOA, VQE, and QNN. (b) Detailed time breakdown of exe-
cuting 64-qubit VQE based on our profiling analysis.

typically managed by a dedicated FPGA controller. The host han-
dles classical tasks such as parameter computation and cost func-
tion evaluation, while the quantum accelerator performs quantum
computations. However, this straightforward decoupled design in-
troduces significant limitations: (1) Communication bottlenecks:
the communication between the host and quantum accelerator re-
lies on low-speed network-based links, resulting in unacceptable
transmission latency. (2) Inefficient quantum-host interaction:
the decoupled architecture hinders the implementation of efficient
instruction sets for seamless quantum-host interaction. It prevents
the development of effective data exchange protocols or interfaces.
These hardware limitations result in low software performance at
both compile-time and runtime.

A tightly coupled system that integrates the host and quantum
accelerator into a single, efficient unit could effectively address
the aforementioned issues. However, building such an integrated
system presents several challenges: (1) Unified memory space
design challenge: integration requires a unified memory space
to facilitate fast communication between the host and quantum
accelerator. This demands an efficient memory organization strat-
egy to ensure low-latency data exchange and high performance.
(2) Quantum controller design challenge: The quantum ac-
celerator imposes unique bandwidth demands. To meet these re-
quirements, a high-performance quantum controller is essential to
support enough bandwidth and enable efficient host-accelerator
interaction through robust hardware interfaces. (3) Instruction
set architecture (ISA) design challenge: Existing instruction sets
are inadequate for tightly coupled architectures. Developing such
systems requires a new ISA tailored for hybrid quantum-classical
algorithms, supporting both efficient computation and data com-
munication while maintaining well-defined memory consistency.
These challenges highlight the complexity of designing a cohesive
and tightly integrated system that seamlessly combines the host
and quantum accelerator.

In this paper, we present Qtenon, a tightly coupled system de-
signed to efficiently execute hybrid quantum-classical workloads,
as shown in Figure 3. Qtenon addresses the challenges outlined
for both the hardware side and the software side. For the hard-
ware design, Qtenon first incorporates a unified memory space that
seamlessly integrates the host and quantum accelerator, enabling
efficient data sharing and management. To ensure scalability, the
memory hierarchy is organized into a 2D space, where the unified
memory is divided into segments, with each dedicated to the qubits

used in hybrid quantum-classical algorithms. Then, built upon the
unified memory space, Qtenon features an advanced quantum con-
troller designed to optimize communication between the host and
quantum accelerator. It provides four dedicated data paths with effi-
cient hardware interfaces, allowing for transparent memory access
and enabling low-latency access to the host memory hierarchy from
the quantum side. Finally, leveraging the efficient host-accelerator
communication, Qtenon implements a multi-stage pipeline for con-
trol pulse computation. This pipeline maximizes computational
parallelism and minimizes redundant operations, ensuring highly
efficient execution of quantum-classical tasks.

For the software design, we propose a customized instruction
set architecture (ISA) tailored to the hardware architecture, incor-
porating both computation and data communication instructions.
The ISA ensures memory consistency within the unified memory
space, enabling fine-grained synchronization. Fine-grained control
provided by the ISA allows for incremental compilation at run-
time, reducing redundant compilation overheads and significantly
improving overall system efficiency. Building on the ISA, we also
develop a scheduling algorithm for quantum-host interaction, en-
suring seamless coordination and efficient execution. The hardware
and software parts together enable efficient execution of hybrid
quantum-classical algorithms. In summary, our contributions are
as follows:
• We propose Qtenon, an integrated hardware-software sys-
tem optimized for hybrid quantum-classical workloads. We
implement Qtenon in Chisel as an RISC-V extended ASIC
chip.
• For hardware innovations, we introduce a unified memory
space managed by an efficient quantum controller and im-
plement a multi-stage pipeline for efficient pulse generation.
• For software innovations, we design a custom ISA that in-
cludes computation and data communication instructions.
The ISA enables both memory consistency support and effi-
cient quantum-host scheduling.

Experimental results demonstrate that Qtenon efficiently han-
dles various Variational Quantum Algorithms (VQAs), achieving a
speedup of up to 441.5× for classical processing. Furthermore, it de-
livers up to 14.9× end-to-end speedup compared to state-of-the-art
quantum hardware architectures.

2 Background
2.1 Hybrid Quantum-Classical Algorithm
Hybrid quantum-classical algorithms are a promising approach for
leveraging the strengths of both quantum and classical comput-
ing, particularly on Noisy Intermediate-Scale Quantum (NISQ) de-
vices [16]. One of the most widely studied hybrid algorithms types
is the Variational Quantum Algorithms (VQAs) [6, 8, 9, 19, 27, 34].
VQAs address optimization problems by employing parameterized
quantum circuits to explore solution spaces and using classical
optimization methods to minimize a cost function. Prominent ex-
amples of VQAs include the Quantum Approximate Optimization
Algorithm (QAOA) [4, 22, 23], the Variational Quantum Eigensolver
(VQE) [32], and Quantum Neural Networks (QNNs) [41].

QAOA is tailored for combinatorial optimization problems, which
involve finding the best configuration of variables under specific

Qtenon: Towards Low-Latency Architecture Integration for Accelerating HybridQuantum-Classical Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

4

Cost

Function

Optimization
Parameter Shfit/

SPSA

FPGACPU

Q
ua

nt
um

 C
hi

pAWG Unit

Timing Queue

Data Processor

ADI

REG BufferREG Buffer

PGUs

Ti
m

in
g

C
on

tr
ol

le
r

Queue 1

Queue 2

Queue n

......
C

on
ne

ct
io

n
In

te
rf

ac
e

Quantum Program Binary

DAC

DAC

DAC

ADC

1

2

3

56

Figure 2: Example of existing hardware architecture when
running a hybrid quantum-classical algorithm.

constraints—a challenge central to fields like operations research
and logistics. VQE applies the variational principle to determine
the ground-state energy of a Hamiltonian, addressing critical prob-
lems in quantum chemistry and condensed matter physics. Mean-
while, QNNs bring the potential of quantum-enhanced machine
learning, leveraging quantum systems’ high-dimensional feature
space to solve complex computational tasks. In addition, hybrid
approaches have been proposed for accelerating classical high-
complexity problems, such as propositional satisfiability problem
(SAT) problems [29].

2.2 Existing Quantum Hardware Design
Existing quantum hardware systems [21, 37] use decoupled sys-
tem design and often consist of three main components: a host,
which manages high-level control tasks such as parameter tuning
and circuit compilation; one FPGA controller, which manages the
quantum chip by converting high-level quantum programs into
low-level pulse instructions and manages data transmission to and
from the Analog-Digital Interface (ADI); and the quantum chip
itself.

Figure 2 shows the process of one iteration of the hybrid quantum-
classical algorithm (e.g., QAOA). The host transpiles the quantum
circuit based on the quantum hardware. The transpiled quantum
circuits are then compiled into binary programs based on the quan-
tum ISA. The compiled instructions are then transmitted through
❷ Gigabyte Ethernet to FPGA. FPGA controller then uses ❸ Pulse
Generation Units (PGUs) to process the compiled instructions and
calculate corresponding pulses to control the evolution of super-
conducting quantum bits. These pulses are to be combined with
the IQ mixer, converted into the analog signal by the DAC, and
transmitted to the ❹ quantum chip. The results of the quantum
chip can be retrieved through ADC, which are then processed by
❺ data processors to produce state determination, after which they
are sent back to the host for cost estimation and parameter update.

2.3 Existing Quantum Software Design
The existing ISAs for hybrid quantum-classical workloads can be
divided into two parts: quantum-dedicated [13, 15] and unified
ISA [5]. Quantum-dedicated ISA only supports instructions for
quantum chips. eQASM [13] uses ISA that can be translated from
OpenQASM [7] and supports 7-qubit programming. HiSEP-Q [15]
extends eQASM’s ISA with a more efficient qubit encoding method
and extends the qubit number to 128. On the contrary, unified ISA

extends RISC-V ISA so that the instructions can be used by both
host side and accelerator side. QUASAR and its vector extension,
qV [5] are typical examples. Their support is up to 512 qubits. They
also support a single instruction multiple data (SIMD) programming
model. Unified ISA makes it easier to develop efficient programs
for tightly coupled systems, but the synchronization between host
and quantum accelerator is not efficient in previous work. They use
FENCE instruction for synchronization without fine-grained mem-
ory consistency support. The FENCE instruction enforces a strict
ordering of program execution. Although FENCE has good support
on various systems, the coarse-grained strict synchronization over-
head is unacceptable.

3 Motivational Example

Table 1: The comparison of different quantum system archi-
tectures.

System
Decoupled System Tightly Coupled System

eQASM [13] HiSEP-Q [15] Qtenon (ours)

Unified Memory ✘ ✘ ✔

Memory Consistency ✘ ✘ ✔

Data Interface USB Ethernet Tilelink [30] & RoCC [1]
Q-H Comm. Support∗ ✘ ✘ ✔

Comm. Latency ∼1𝑚𝑠 ∼10𝑚𝑠 10𝑛𝑠∼100𝑛𝑠
Instruction Counts∗∗ ✘ ∼ 3 × 104 ∼285
Recompile Overhead 1𝑚𝑠∼100𝑚𝑠 1𝑚𝑠∼100𝑚𝑠 10𝑛𝑠∼100𝑛𝑠
Execution Sequential Sequential Interleaved

* Q-H Comm. Support: Quantum-host communication support.
** We estimate the 64-qubit QAOA algorithm with five layers, running for ten iterations
with a gradient descent optimizer. Since other ISAs only support the quantum part, this
count includes only the quantum instructions.

To motivate our work, we use Table 1 as a comparison between
two different system designs. The decoupled system design sep-
arates the host side and the quantum side and uses a dedicated
FPGA controller to connect the two parts. eQASM [13] and HiSEP-
Q [15] are typical examples of decoupled system design. They use
a decoupled architecture and thus separate the quantum ISA from
the host ISA for software. As for controller design, they leverage
FPGA storage for quantum control and communication between
the host and the quantum accelerator. During execution, the data
is transmitted through the FPGA interfaces (usually USB or Ether-
net), with a latency from 1𝑚𝑠 to 10𝑚𝑠 , On the contrary, our tightly
coupled system design employs a unified memory space hierarchy
for the whole system with memory consistency support for both
parts. The host and accelerator are linked by low-latency surfaces
(e.g., Tilelink and RoCC) with dedicated instruction and hardware
data path. The data transfer overhead ranges from 10𝑛𝑠 to 100𝑛𝑠 ,
which is significantly better than the decoupled architecture.

In addition, decoupled system design usually uses dedicated
ISA for quantum chips without consideration for the interaction
between host and quantum accelerator. The dedicated ISA often
encodes qubit index statically into the program, resulting in long
instruction sequences after compilation (more than 104 instruc-
tions). Also, the lack of communication support forces the code to
be recompiled from scratch each iteration, and the recompilation
overhead ranges from 1𝑚𝑠 to 100𝑚𝑠 . Worse still, the compiled pro-
gram must be executed in a single pass without any overlapping

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chenning Tao, Liqiang Lu, Size Zheng, Li-Wen Chang, Minghua Shen, Hanyu Zhang, Fangxin Liu, Kaiwen Zhou, and Jianwei Yin

Hardware (Sec. 5) Software (Sec. 6)

Quantum-classical

Workload

Compiler

Instruction Scheduling
(Sec. 6.3)

Memory Consistency

(Sec. 6.2)

Qtenon ISA

(Sec. 6.1)

L2 Cache

Memory

Public

Cache

Private

Cache

Core 1

L1 D$

L1 I$

Quantum AcceleratorRISC-V Chip
Q

ua
nt

um
 C

hi
p

QSpace

Compute Unit
(Sec. 5.3)

Unified Memory Hierarchy (Sec. 5.1)

Quantum Controller (Sec. 5.2)

Figure 3: Overview of Qtenon system.

possibilities with host processing. As for our tightly coupled design,
we support both computation and communication instructions in
our ISA, enabling fine-grained synchronization control between
host and quantum accelerator. Moreover, based on the scalable uni-
fied memory management from hardware design, our ISA is able
to encode a variety lengths of qubits with much less instructions
(e.g., 285 is enough for 64 qubits). The communication ability also
makes it possible to perform incremental compilation, reducing
recompilation overhead to less than 100𝑛𝑠 in practice.

Overall, the benefits of both the hardware side and software
side motivate our design and implementation of Qtenon, which
is a tightly coupled system designed to efficiently execute hybrid
quantum-classical workloads.

4 Qtenon Overview
The overall design of the Qtenon system is illustrated in Figure 3. It
consists of two key components: hardware and software. For seam-
less integration and high-performance communication between
the quantum and host systems, we propose a unified memory hi-
erarchy (Section 5.1). Quantum program execution is facilitated
by a quantum controller featuring specialized interfaces for cache
communication and dedicated data paths (Section 5.2). Addition-
ally, a multi-stage hardware pipeline is implemented to perform
quantum control pulse calculations (Section 5.3). The hardware
design is elaborated in Section 5. To enable efficient communica-
tion in this tightly integrated system, we introduce Qtenon ISA
(Section 6.1). The user’s hybrid quantum-classical workload can be
programmed using our ISA with computation and communication
instructions. The program’s execution flow is optimized by an in-
struction scheduling algorithm (Section 6.3) to overlap quantum
execution with classical processing with the support of fine-grained
memory consistency (Section 6.2). The software design is detailed
in Section 6.

5 Hardware Design of Qtenon
In this Section, we explain the hardware design of Qtenon. To tightly
integrate the host and quantum accelerator components, we intro-
duce a unified memory hierarchy and enable fast communication
between the host side and the quantum chip side via a quantum
controller; we also introduce a multi-stage hardware pipeline for
fast computation of quantum chip control pulses.

Table 2: Quantum controller cache design for 64 qubits.

Segment Description Size

.program

• Quantum program instructions.
• #Entries: 64 set×1024 entry
• Entry size: type (4b)+reg_flag (1b)+
data (27b)+status (3b)+qaddr (30b)

520 KB

.pulse
• Control pulses for quantum chip.
• #Entries: 64 set×1024 entry
• Entry size: 10×64 bit

5 MB

.measure
• Processed readout data.
• #Entries: 5120 entry
• Entry size: 64 bit

40 KB

.slt

• Skip Lookup Table
• #Entries: 64 set×2 way×128 entry
• Entry size: tag (20b)+qaddr (30b)+
valid (1b)+count (5b)

112 KB

.regfile
• Frequently updated parameters.
• #Entries: 1024 entry
• Entry size: 32 bit

4 KB

Total 5.66 MB

5.1 Unified Memory Hierarchy
The tightly coupled architecture of Qtenon necessitates a unified
memory hierarchy that seamlessly integrates both the host and
quantum accelerator. To achieve this, we adopt a standard multi-
level cache design and introduce a new memory space, referred
to as the quantum controller cache, as illustrated in Figure 4. The
quantum controller cache is implemented as an SRAM buffer and
positioned at the same hierarchical level as the host’s L1 cache,
providing high bandwidth for data communication.

To achieve scalable management of the quantum controller cache,
we organize it as a 2D space. For the first dimension, we divide
the memory space into five segments; for the second dimension,
we divide each segment into a list of qubit chunks. This 2D space
makes the system flexible and easy to expand to larger quantum
qubit space. We show the five segments in Figure 4 and explain
the usage of each segment in Table 2. The .slt and .pulse segments
are kept private to ensure system integrity. The Skip Lookup Ta-
ble (.slt) segment, analogous to cache tag management in classical
architectures, operates under exclusive hardware control through
dedicated on-chip logic. This design choice stems from two critical
factors: 1) the absence of QAddress mapping prevents direct CPU
access, and 2) the SLT requires dynamic real-time updates during
pulse generation to maintain temporal consistency between the
.program instructions and .pulse outputs. The .pulse segment con-
tains PGU-generated control pulses that could theoretically support
user access. However, public exposure would mandate three-way
synchronization across the interdependent .program, .pulse, and .slt
segments, creating significant hardware coordination overhead and
software complexity. Our architecture preserves both performance
efficiency and data security by keeping these segments private
through hardware isolation. The .program, .regfile, and .measure
segments are public and accessible to users. The .program seg-
ment stores the quantum program instructions including data type,
reg_flag, and data. The .measure segment stores processed readout
data from the quantum chip. The .reg segment stores the register

Qtenon: Towards Low-Latency Architecture Integration for Accelerating HybridQuantum-Classical Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

...

1

Core 1

L1 Cache

L2 Cache

DRAM

Quantum ControllerHost

Q
ua

nt
um

 C
hi

p

64
64-bit

64-bit

64-bit

256-bit

Register Public Quantum Controller Cache
2 L2 Public Quantum Controller Cache

4 Quantum ChipQuantum Controller Cache
3 L2 Private Quantum Controller Cache

Q

.program

qubit #0

qubit #64
0xfc00-0xffff

qubit #1
0x400-0x7ff

...

Private

Cache

Public

Cache

0x70000-0x70100
.regfile

0x71000-0x72400
.measure

.pulse

qubit #0

0x0-0x03ff

0x0 RY.0.pi/2 p#1
RZ.1.#1 p#50x1

... ...

idx info addr

0x80000-0x803ff

qubit #1
0x80400-0x807ff

qubit #64
0x8fc00-0x8ffff

p#1
p#3

0x80000
0x80001

idx p_data

... ...

...64 set
2 way

128 entry

.slt

(Sec. 5.3)

1

2

3

4

Compute Units

RoCC Interface
Quantum Controller Cache Interface

Analog-Digital Interface

Figure 4: Unified memory space and quantum controller of Qtenon with 64 qubits.

parameters, which are to be linked to the .program segment after
compilation.

Each segment is further organized as a list of qubit chunks.
The chunks provide dedicated memory addresses for each qubit as
shown in Figure 4, and this address is called QAddress. For .regfile
and .measure segments, their memory space is shared by all qubits.
Organizing the segments into chunks makes it possible to reduce
quantum program code size and quantum data transfer overhead.
By assigning a dedicated memory address range to each qubit, we
eliminate the need to include the qubit index in each entry of the
quantum program definition, as the index is inherently encoded
within the address space. This also makes it more efficient to trans-
fer large quantum programs.

Figure 4 and Table 2 show an example for a 64 qubit design:
The whole .program segment space is implemented with 64 sets,
corresponding to 64 qubits. Each qubit is assigned to a program
memory of 1024 entries, the address range for the first qubit is
defined as 0x0-0x3ff, for the second qubit as 0x400-0x7ff, and
so forth. The assigned address will be used as an index to access
the corresponding entry. Each entry employs a type and data space
to define the gate parameter. If this gate’s parameter is frequently
updated, the reg_flag bit is set to 1, and the data field stores the
.regfile index. QAddress links the .pulse data using quantum address.
The .regfile is set with 1024 entries, each 32 bits long, starting at
0x70000. The .measure segment employs 5120 entries, with each
entry 64 bits long, and the start address is 0x71000. The .pulse and
.slt segments also have the same number of sets as the number of
qubits. The .pulse segment employs 1024 entries, with each entry
640 bits long to meet the bandwidth requirement for the output
data. The total memory space for the quantum controller cache is
5.66 MB, with the majority of the space allocated to .pulse segment.

5.2 Quantum Controller
Quantum controller is used to control the quantum chip, which is
composed of quantum controller cache and compute units for pulses.
The quantum controller has three outer connection interfaces for
it to interact with the host and the quantum chip.

System Bus

#1 #2 #32......

......

Decodertag

32-to-1 MUX

MUX Quantum Address

RespReq

Read/Write

Read/Write

RBQ

WBQ

RBQ: Reorder Buffer Queue WBQ: Write Buffer Queue

TagReqs Memory

Barrier

Public Cache

Private Cache
Address Translator

8-to-1 MUX

#1

[31:0] [63:32]

#2 #8

[255:224]

EN

Write

Write
SIndex

Length

256-bit

Update

#n
#2
#1 1

2
3

=M_XWR

Host Address

Figure 5: Quantum controller cache interfaces.

For the connection between the quantum controller and host,
Qtenon supports three data paths: ❶ host core register and public
quantum controller cache, ❷ host L2 cache and public quantum con-
troller cache, and ❸ host L2 cache and private quantum controller
cache. For the connection between the quantum controller and the
quantum chip, Qtenon uses the datapath ❹. The data path ❶ uses
the RoCC interface for transmitting data. This data path features
one-cycle latency and transmits data in 64-bit segments, making
it ideal for transmitting small data, such as updated parameters or
information from the quantum. The data path ❷ and ❸ use the
quantum controller cache interface shown in Figure 5 for trans-
mission. The data path ❷ has a higher latency than ❶ but enables
larger data transmissions, such as transferring complete quantum
program instructions. Data path ❶ and ❷ feature transmission
in public quantum controller cache space. The data path ❸ estab-
lishes a communication pathway between the host L2 cache and
the private memory space within the quantum controller, which
remains inaccessible to the user. A dedicated DRAM region, QS-
pace, reserved exclusively for quantum data, is directly linked to
the controller’s private memory space. This memory address range
is shielded from the CPU and will not be accessed by the host core.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chenning Tao, Liqiang Lu, Size Zheng, Li-Wen Chang, Minghua Shen, Hanyu Zhang, Fangxin Liu, Kaiwen Zhou, and Jianwei Yin

Program Index Buffer

Type StatusR Data QAddress

RY 0 pi/2 1 0x100000280

02930323359606164

>0

[32:30]

[32:30]

[64:33]

[59:33]

[64:61]

[60] [60]

QAddress
!hitSkip

Lookup

Table

Regfile
EN

EN

M
U

X

D
ec

od
er

PGU #0

Priority Encoder

busy
stall

stallstall

... A
rb

ite
r

D
ec

od
er

Data

Type

Program Index BufferPC

Next
Update

Stage 1 Stage 2 Stage 3 Stage 4

Pulse #0

Pulse #1

Pulse #64

...

EN

PGU #1

PGU #n

QAddress

Data

Figure 6: Four-stage computation workflow.

This provides a connection for the quantum controller to leverage
the host memory hierarchy.

Enabling datapath ❷❸ requires establishing a connection be-
tween the host L2 cache and quantum cache. This presents three
challenges: maintainingmemory consistency between quantum and
host, managing out-of-order responses from the system bus, and
handling varying data widths across components. A memory bar-
rier mechanism is implemented to maintain high-efficiency cache
consistency between the quantum and host. The Reorder Buffer
Queue (RBQ) is introduced to manage out-of-order responses. The
Write Buffer Queue (WBQ) design is employed for efficient pro-
cessing between different data widths. The detailed architecture
is illustrated in Figure 5. The address space is divided into the
quantum address domain and the host address domain.

The RBQ address the out-of-order response issue. The system
bus employs a TileLink interface, with requests buffered in an
output queue. Each request is associated with a unique 5-bit tag.
Requests are issued whenever the bus is free, and a unique tag is
available. Since responses arrive out of order, an RBQ (containing
32 entries corresponding to the number of unique tag numbers)
is utilized to realign responses based on their tags. Responses are
enqueued into their corresponding queues, and during output, the
tag queue determines the specific data to be dequeued and output in
the correct order. The memory barrier will be updated if the request
is a write instruction for the cache, indicating those addresses are
synchronized.

To address the varying data widths in the public quantum con-
troller cache space (e.g., 32-bit width for programs) and the system
bus, a WBQ with 8 separate 32-bit queues is employed. Each queue
corresponds to a 32-bit segment, and during an enqueue opera-
tion, the requested data length is used to determine which queues
can accommodate the data. This ensures that requests of varying
lengths are efficiently mapped to the available queues. The indexing
mechanism (SIndex) then determines which data will be written in
the public space.

The quantum controller cache .pulse directly connects the quan-
tum chip through the Analog-Digital Interface ❹. This aligns with
the high bandwidth requirement of the ADI interface for controlling
the quantum chip. Qtenon assumes each qubit requires two 16-bit,
2GHz Digital-to-Analog Converters (DACs). This setup imposes a
bandwidth requirement of 64 bits/ns (16 bits × 2 DACs × 2 GHz),
equivalent to 8 GB/s per qubit. The generated pulse is organized
in the output order with each entry of 640 bit width. Assume our

SRAM runs at 200MHz. To meet the output requirement of the
DACs, each data entry is put into ten parallel 64 bit buffers before
executing. It is then fed into a SerDes unit, which bridges the SRAM
and DAC by serializing the data at the target 2 GHz DAC frequency.
This organization ensures the chip can handle the data throughput
required by the system.

5.3 Multi-stage Hardware Pipeline
To maximize the parallelism of the preprocessing process and
fully utilize the compute power, we propose a four-stage hardware
pipeline, illustrated in Figure 6, for executing the pulse comput-
ing workload. Such a multi-stage pipeline is only feasible with the
support of our unified memory space and quantum controller.

The processing begins with Stage 1, which reads the circuit
definition from the Program Index Buffer based on the address
and sends the data to Stage 2. In Stage 2, the processing data is
decoded. If the R field is set to 1, gate data is fetched from the Regfile;
otherwise, the data is taken directly from the Program Index Buffer.
The Status field indicates whether the QAddress in the Program
Index Buffer is valid. If the status is 0, the QAddress is invalid,
further processing is needed. The Type and Data are forwarded into
the SLT for processing, which is used to either retrieve the cached
QAddress if this parameter has been computed before or allocate a
new QAddress. The returned QAddress is updated in the Program
Index Buffer. If this parameter has not been computed before, the
allocated QAddress is also passed to Stage 3.

In Stage 3, the pulse generation process is executed, leveraging
compute parallelism through a Priority Encoder to select a free
PGU and using a decoder to assign data accordingly. If all PGUs
are occupied, a stall signal is sent to stall Stage 1 and 2. However,
Stage 4 is unaffected by the stall and is connected to Stage 3 using a
ready-valid signal. All PGUs are linked to an Arbiter to handle data
contention, which resolves conflicts by selecting the valid signal
from the PGU. The Arbiter then forwards the output signal to the
Decoder, which writes the results to the corresponding QAddress
in Pulse Cache. This design optimizes parallelism by ensuring pulse
generation continues seamlessly, even in resource contention.

To skip the redundant computation of control pulses, we design
an SLT workflow to link the parameters with the corresponding
pulse address in the quantum controller if the pulse has been com-
puted before. The detailed workflow for SLT is shown in Figure 7.
Each qubit has its own SLT. Each SLT is configured in two sets, each
containing 128 entries. ❶ The input data is truncated into a 3-bit

Qtenon: Towards Low-Latency Architecture Integration for Accelerating HybridQuantum-Classical Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

23

4

=
Tag QAddress V

QAddress V

Count
20 30 1 5

......

Read
(1) hit
(2) miss

intag
Count+1

B+tag<<4
 min(count)
 v==0

Quantum L1

1 Compare
QAddr.

(a)load (b)evict

Read Write

Replace PolicyMemory Operation

Update

0x100

RX 1.23

RX pi

0

0x40

1

0

1

0

0x20

AllocatorM
U

X

Skip Lookup Table (SLT)

 Write back evicted SLT Index.
 Allocate a new address when there

is no hit in main memory.

Figure 7: The workflow for SLT.

type field and a 4-bit data field (representing two digits before and
after the decimal point). These fields are concatenated to form an
index used to query the SLT. Upon querying, the SLT compares the
input tag with the stored tag in each entry. If a match is found and
the valid bit is set to 1, it returns the corresponding QAddress to the
Program Index Buffer and disables further pulse generation. If all
entries in the SLT result in a miss, the SLT initiates the replacement
policy, which follows the Least Count (LC) approach.

❷ The LC replacement policy prioritizes invalid entries for re-
placement. If any entry has its valid bit set to 0, it is replaced
without requiring a write-back to classical memory. However, if all
entries are valid, the policy evicts the entry with the least count.
When an entry is evicted, the SLT writes it back to the QSpace in
classical memory, involving an address translation process based
on the tag and the base address of QSpace. Additionally, the SLT
requests the tag stored in QSpace through the same translation
mechanism. ❸ QSpace, designed for quantum state storage, allo-
cates 220 × 4 = 4MB per qubit, derived from the 20-bit tag width
and 4-byte entry size. Suppose the entry in QSpace corresponding
to the requested tag is invalid. In that case, the system signals the
allocator, which generates a new QAddress and passes it to the
next pipeline stage for pulse generation. Conversely, if the QSpace
entry is valid, the existing QAddress is returned. ❹ Finally, the
SLT updates its corresponding entry to reflect the current state,
ensuring consistency across the memory hierarchy.

6 Software Design of Qtenon
In this Section, we explain the software part of Qtenon. The software
part comprises three components: ISA design and compilation;
memory consistency; and software scheduling.

Table 3: Qtenon’s extended ISA.

Type Instruction Explanation

Data Comm.
q_update Host Register→ Quantum Controller Cache.
q_set Host Memory→ Quantum Controller Cache.
q_acquire Quantum Controller Cache→ Host Memory.

Computation
q_gen Generate pulse.

q_run
Run the quantum program for the specified
number of shots.

6.1 ISA Extension and Compilation
The key insight of our ISA is to treat the quantum program as com-
putable data rather than as a sequential static list of instructions,

3863 39 0

Quantum AddrLength

3863 0

Classical Addrq_set

rs2

Quantum Addrq_update

Quantum AddrLengthClassical Addr

roccinst[6:0] rs2 custom-0rs1 rdxd xs1 xs2

q_acquire

rs1

7 5 5 1 1 1 5 7

Parameter

(a) 32-bit RoCC instruction format

(b) Data format

Figure 8: Data communication instructions.

since the quantum accelerator will inherently process and order
instructions based on their timing. This reduces the code transmis-
sion size by encoding indices as quantum addresses. In detail, we
propose two types of ISA: computation and data communication,
which are shown in Table 3. Both types of instructions follow the
RoCC extension format. The RoCC instruction format is explained
in Figure 8 (a). The roccinst field specifies the instruction type. The
rs1 and rs2 fields are used to refer to source register files. The rd
field is used to refer to the destination register. The xd, xs1, xs2
fields are used to indicate whether the corresponding register is
used in the instruction.

For computation, we add two instructions: q_gen and q_run.
q_gen instruction triggers the pulse computation, which generates
the pulses to control the quantum chip, while q_run instruction
runs the quantum program multiple times (which is determined
by the value stored in rs1 register) and retrieves the measurement
results in the corresponding memory segment. For communication,
we add three instructions: q_set, q_update, and q_acquire. The
q_update instruction transfers data from the host core register to
the quantum controller cache. This instruction uses data path ❶ in
Figure 4. The rs1 field specifies the destination quantum address,
while the rs2 field contains the data to be transferred. The q_set and
q_acquire instructions handle the data communication between
host memory and quantum controller cache. These two instructions
use the data path ❷ in Figure 4. For these two instructions, rs1 field
holds the starting address in the classical memory, while the lower
39 bits of register #rs2 represent the starting address in quantum
memory space. The upper 25 bits of register #rs2 indicate the data
length to be transferred. The q_set instruction is used to load the
quantum program to the program segment, whereas the q_acquire
operation is used to retrieve data from .measure segment.

Dynamic Incremental Compilation: For the hybrid quantum-
classical algorithms, the quantum programs across consecutive
iterations exhibit quantum locality—only part of the parameters
need updates, while all other program codes remain identical. Pre-
vious work [5, 13, 15] compiles the algorithms and generates code
from scratch each iteration (just-in-time compilation), incurring
huge compilation overhead at runtime. Furthermore, the newly
generated code should be transferred from the host to the quantum
controller as a whole, resulting in low runtime performance. On
the contrary, our ISA uses communication instructions to enable
incremental compilation at runtime. In detail, we treat every gate
in a quantum program as a parameter, which can be computed
and updated independently. We include a reg_flag bit within the
program definition to indicate whether the registers can be updated

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chenning Tao, Liqiang Lu, Size Zheng, Li-Wen Chang, Minghua Shen, Hanyu Zhang, Fangxin Liu, Kaiwen Zhou, and Jianwei Yin

QCI
C

Q

TL
PC
MC

ADI

A

R
R RRW W

OUT OUT
IN IN

R
PUT

tRUN

tSTALL tTL

tRUN
tQtQ

tQ

QCI

QCI: Quantum-classical interface

PC: Pulse cache

tTL: Tilelink tranmission latency

tQ: Quantum program time
MC: Measurement cache

C

Q

TL
RoCC

PC
MC

ADI

Q
PRO PROA

Q
A

R R R
W W W

OUT OUT OUT
IN IN IN

PUT PUT PUT

PUTPUT

(b) w/ memory barrier

(a) w/ FENCE

FENCE

#1 synced

FENCE

#3 synced

PRO

Figure 9: Compare the timing of different synchronization
methods. (a)FENCE operation stalls the classical pipeline un-
til all quantum operations are complete. (b) Fine-grained
synchronization allows the overlapping of quantum execu-
tion and classical post-processing. Memory consistency is
ensured by querying through the RoCC interface.

directly in each iteration. Once this bit is set, subsequent updates
to the quantum program code only happen to the selected registers
using the q_update instruction, eliminating the need to recompile
the entire program.

6.2 Memory Consistency
Our tightly coupled system requires memory consistency between
the quantum controller cache and host memory. Two potential
data races could occur in this setup: 1. Data race between q_set
and q_gen: Initializing the pulse generation process on an address
before the program setting on this address is completed. 2. Data
race between q_run, q_acquire, and post-processing: Acquiring
a quantum address before execution completes or the host access-
ing memory before the quantum controller finishes writing. For
the first case, a barrier can be added to the quantum controller
cache, effectively resolving the issue without requiring any mod-
ifications to the software. For the second case, the design differs
for different architectures. Previous work [36] uses FENCE instruc-
tion to synchronize the data. But directly using FENCE instruction
for quantum controller cache and host memory introduces signif-
icant performance overhead. We use an example in Figure 9 (a)
for explanation. In this example, two FENCE instructions are re-
quired. The first FENCE instruction is used to resolve the data race
between q_run and q_acquire, resulting in a stall time of tSTALL
on the host side. The second FENCE instruction solves the data race
between q_acquire and host post-processing. The host can only
start the post-processing process after all Tilelink transmissions
are completed.

Algorithm 1: Batched Transmission Policy
Input: Number of qubits 𝑁 , bus width 𝐵, total shots 𝑆

1 Compute transmission interval 𝐾 ← ⌊𝐵/𝑁 ⌋;
2 Initialize 𝑏𝑎𝑡𝑐ℎ ← ∅;
3 Initialize 𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 ← 0;
4 Initialize 𝑎𝑑𝑑𝑟 ← ℎ𝑜𝑠𝑡_𝑎𝑑𝑑𝑟 ;
5 for each shots 𝑟 = 1, 2, . . . , 𝑆 do
6 Run quantum circuit for 𝑁 qubits;
7 𝑟𝑒𝑠𝑢𝑙𝑡 ← measurement results;
8 Append 𝑟𝑒𝑠𝑢𝑙𝑡 to 𝑏𝑎𝑡𝑐ℎ;
9 𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 ← 𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 + 1;

10 if 𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 = 𝐾 then
11 Tilelink PUT← 𝑏𝑎𝑡𝑐ℎ, 𝑎𝑑𝑑𝑟 ;
12 𝑎𝑑𝑑𝑟 = 𝑎𝑑𝑑𝑟 + ⌈𝑁 /8⌉ × 𝐾 ;
13 Clear 𝑏𝑎𝑡𝑐ℎ and reset 𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 ← 0;

14 if 𝑏𝑎𝑡𝑐ℎ ≠ ∅ then
15 Transmit remaining 𝑏𝑎𝑡𝑐ℎ;
16 Clear 𝑏𝑎𝑡𝑐ℎ;

To address the latency introduced by the FENCE instruction, we
use fine-grained synchronization in the quantum controller cache.
The benefit is that it allows efficient instruction scheduling and
overlapping for quantum, quantum-host transmission, and host
processing, which can effectively mask some transmission and
post-processing latency. The example in Figure 9 (b) illustrates
the benefits of this fine-grained synchronization. The q_run and
q_acquire instructions are allowed to overlap. The TileLink PUT
instruction is initiated immediately after each quantum run and
executed in parallel with the MC’s write operation. The CPU can
access and post-process the part of the synchronized data before
the whole execution is completed.

To implement fine-grained synchronization, we introduced a
cache consistency protocol for the quantum controller cache and
host memory by implementing a soft memory barrier on the host
memory address designated for synchronization with the quantum
controller cache. When the CPU attempts to access a host address
synchronized by the quantum controller cache, it first queries the
memory barrier within the quantum controller via the RoCC in-
terface. This query is non-blocking, allowing ongoing instructions
on the quantum controller to proceed uninterrupted and incurring
only a single-cycle latency. The memory barrier (see Section 5.2)
monitors the status of the PUT requests issued by the controller. If
the corresponding address’s write request has been sent through
the system bus, the controller returns a valid signal.

6.3 Efficient Quantum-Host Scheduling
Our proposed synchronization method, incorporating a memory
barrier, enables fine-grained instruction scheduling between quan-
tum and host, allowing instructions such as q_run, q_acquire, and
host post-processing to overlap effectively. This capability is crucial
for achieving efficient quantum-classical integration.

A simple transmission scheduling approach transmits the mea-
surement results immediately after each quantum circuit run.While

Qtenon: Towards Low-Latency Architecture Integration for Accelerating HybridQuantum-Classical Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 4: Hardware configurations for Qtenon.

Part Configuration

Core Rocket[1] @ 1GHz Boom-L [40] @ 1GHz
L1 16KB 4-way I-Cache, 16KB 4-way D-Cache
QCC 5.66 MB, configured according to Table 2
QC 64 qubits, 8 PGUs
L2 512KB 8-bank 4-way
Memory 16GB DDR3 4-bank

* QC: Quantum Controller
** QCC: Quantum Controller Cache

straightforward, this method has the drawback of increasing the
number of bus accesses. For example, our 64-qubit setup triggers
a 64-bit transmission after every measurement, resulting in four
times the demand on the system bus due to under-utilization of bus
bandwidth (256 bits/cycle).

To improve bandwidth utilization, we propose batched transmis-
sion shown in Algorithm 1. This scheduling approach leverages
speed and efficiency by batching the measurement results to utilize
the bandwidth fully. Given the bus width 𝐵 and the number of
qubits 𝑁 , the transmission interval is determined as 𝐾 = ⌊𝐵/𝑁 ⌋.
This means the transmission is scheduled to happen every 𝐾 shots
(e.g., four shots per transmission in our setup). The result is ap-
pended to the batch for each shot and increments the batch_count
(lines 6-9). As the batch_count reaches 𝐾 , the controller outputs a
Tilelink PUT request while increasing the 𝑎𝑑𝑑𝑟 given the data width
(lines 10-12). After all the shots are finished, the remaining data in
the batch is transmitted to the host (lines 14-16).

7 Experiment
7.1 Experiment Setup
Qtenon Design: Qtenon is configured as outlined in Table 4. A
custom quantum controller is implemented as a RoCC extension,
with design code developed in Chisel [2]. The quantum processing
element includes PGUs, treated as a black box with an enforced
latency of 1000 cycles, approximating realistic operational times [14,
31]. We configure eight such PGUs in our quantum control system
for our experiments. The configuration for the quantum controller
cache follows Table 2. On the host side, we experiment with two
core configurations, Rocket [1] and Boom-Large [40], both set at a
frequency of 1 GHz. These cores share the same memory hierarchy,
which includes a 16 KB, 4-way set-associative L1 cache for both
instructions and data. The L2 cache comprises an eight-banked
configuration with 512 KiB capacity and 8-way set-associativity
across eight banks, while the main memory consists of a 16 GB
DDR3 module divided across four memory banks.

Experimental Methodology: Qtenon is designed as an ASIC
chip and is simulated by Firesim [20]. This FPGA-accelerated hard-
ware simulation platform provides cycle-accurate modeling of our
design’s hardware and softwaremodel, including I/O andDRAM [3].
The simulation is run on the Xilinx Alveo U200 Accelerator Card.
The RTL hardware implementation frequency is set at 50MHz for
Rocket-based Qtenon and 30MHz for Boom-based Qtenon. Fig-
ure 10 shows the floorplan of our Qtenon-64 with Rocket core. For
the quantum chip input and output, we use simulator data obtained

Rocket

Core

Simulation Resources

Quantum-Classical

Interface

Compute

Unit

.regfile.slt.m
ea

su
re

m
en

t

.program & .pulse
Firesim

Figure 10: Floorplan of Qtenon-64 with Rocket Chip archi-
tecture, simulated on Alveo U200 using FireSim.

from Qiskit. For the software part, we modified the RISC-V GNU
Toolchain to support Qtenon’s extended ISA.

We use cycle count to measure the performance of Qtenon and is
obtained using the RDCYCLE [12] control status register [11]. For the
quantum execution time, we standardized based on the following
assumptions: the gate times for common operations include 20𝑛𝑠
for single-qubit gates and 40𝑛𝑠 for two-qubit gates. Measurement
operations generally require a pulse of 100𝑛𝑠 ∼ 2𝜇𝑠 , followed by
an equivalent duration to process the measurement result [24]. In
our experiments, this measurement time is set to 600𝑛𝑠 [39]. The
time of the whole quantum-classical algorithm can be divided into
two parts: quantum execution time and classical execution time.
The classical execution time in our experiment can be broken down
into the following parts: quantum-host communication time, pulse
generation time, and host computation time.

Baseline Configuration: We compare Qtenon against a de-
coupled hardware system. The host is configured with an Intel
i9-14900K CPU and 64 GB of DDR5 RAM. The quantum circuit
is generated using Qiskit [17] and compiled into OpenQASM [7].
The host system and the quantum chip controller (an FPGA) are
connected using a 100-gigabyte Internet connection with UDP pro-
tocol. We omit the overhead of using possible switches and other
network devices. The FPGA execution time is considered under
optimal conditions and focused solely on pulse generation, which
is set to a fixed latency of 1000𝑛𝑠 per pulse [14, 31]. The Analog-
Digital Interface (ADI) latency is assumed to be a fixed 100𝑛𝑠 for
each direction [26].

Benchmark: he benchmarks in our evaluation include three
variational quantum algorithms (VQAs). 1) QAOA is set to solve
the MAX-CUT problem on 𝑛𝑞 number of nodes using the standard
alternating ansatz with five layers [10]. 𝑛𝑞 is the number of qubits.
2) VQE is applied to molecular ground state simulations, where the
number of qubits corresponds to the number of molecular spin-
orbitals. 3) QNN is implemented through hardware-efficient ansatz
with alternating 𝑅𝑦 (𝜃) and CZ gates in 2 layers. The number of sam-
pling shots for each quantum circuit is set to 500, and the number of
iterations is 10. We employ two parameter optimization algorithms
for the quantum variational algorithms: the Gradient Descent (GD)
method, which uses the parameter shift rule to compute the gradi-
ent, and the Simultaneous Perturbation Stochastic Approximation
(SPSA). These two methods correspond to different computational
scenarios. In the GD method, one parameter is updated at a time,
leading to simpler classical post-processing and pulse generation
for each quantum-classical iteration, but requiring more communi-
cation rounds. In contrast, the SPSA method updates all parameters

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chenning Tao, Liqiang Lu, Size Zheng, Li-Wen Chang, Minghua Shen, Hanyu Zhang, Fangxin Liu, Kaiwen Zhou, and Jianwei Yin
 s

pe
ed

up

QAOA

120

240

360
Qtenon-Boom-LQtenon-Rocket

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

VQE
QNN

8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

10

15

5

(a) Classical execution time speedup (b) End-to-end speedup

#qubits

#qubitsQAOA VQE QNN

Figure 11: The overall performance of Qtenon compared with baseline when running VQA optimized by the GD optimizer.

 s
pe

ed
up

70

140

210
Qtenon-Boom-LQtenon-Rocket

8 16 24 32 40 48 56 648 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

12

4

8

(a) Classical execution time speedup (b) End-to-end speedup

#qubits

#qubitsQAOA VQE QNN

QAOA
VQE
QNN

Figure 12: The overall performance of Qtenon compared with baseline when running VQA optimized by the SPSA optimizer.

simultaneously, which increases the computational effort for classi-
cal post-processing and pulse generation per iteration but reduces
the overall number of communication rounds.

7.2 Performance Comparison
We evaluate the performance of Qtenon with two RISC-V core con-
figurations against the decoupled baseline system setup across dif-
ferent qubit configurations, ranging from 8 to 64 qubits. In both pa-
rameter optimization algorithms, as the number of qubits increases,
the end-to-end execution speed continues to improve compared to
the baseline system, as shown in Figure 11 (b) and Figure 12 (b).
Specifically, for 64-qubit QAOA, VQE, and QNN algorithms, Qtenon
achieves end-to-end speedups of 14.7×, 11.7×, and 6.9× under GD
optimization, and 14.9×, 11.5×, and 6.9× under SPSA optimization,
respectively.

In terms of classical execution time, the GD optimization algo-
rithm requires more communication rounds, which increase with
the number of qubits. Qtenon reduces communication overhead
through a specialized quantum controller and shortens parameter
optimization time via ISA extensions and incremental compilation,
achieving average speedups of 354.0× for QAOA, 375.8× for VQE,
and 221.7× for QNN. In contrast, the SPSA optimization method
maintains a consistent number of communication and parameter
optimization rounds, regardless of the number of qubits, and is
significantly lower than the GD method. As a result, the speedup
is slightly lower than the GD method, but it still achieves aver-
age speedups of 167.1× for QAOA, 131.8× for VQE, and 124.6× for
QNN. By co-designing software and hardware to tightly couple the
classical and quantum components, Qtenon demonstrates strong
adaptability and efficiency across different variational quantum
algorithms.

An example of the end-to-end time breakdown is shown in Fig-
ure 13. The effective quantum execution time only contributes to
7.9% percent of the total running time in Figure 13 (a). With Qtenon

4.4%

9%

7.9%

65.1%

(a) Baseline (b) Qtenon w/o software (c) Qtenon

78.7%

204.3 ms 22.1 ms 18.1 ms

0.04%

74.5%

21.8%
3.7%

3.7%

89.2%

7%

0.03%

Quantum execution Pulse generation
Host computationQuantum-host comm.

Figure 13: The end-to-end breakdown of 64-qubit VQE opti-
mized by SPSA optimizer.

hardware proposed in Section 5, the total execution time decreases
from 204.3𝑚𝑠 to 22.1𝑚𝑠 . In particular, the quantum-host communi-
cation time is reduced to almost negligible compared to other parts.
The most time-consuming part is the host computation, which
still contributes to 21.8% percent of the total running time. This
time could be further reduced by applying the memory consistency
model and instruction scheduling method presented in Section 6. In
Figure 13 (c), the quantum time is able to occupy nearly 90% of the
total execution time, significantly reducing the classical execution
overhead.

7.3 Latency Profiling
We profile the latency of the three classical parts involved in ex-
ecuting 64-qubit variational quantum algorithms: quantum-host
communication, pulse generation, and host computation.

Quantum-host Communication:Weprofile the quantum-host
communication time of Qtenon using the Boom core. For the GD
optimization method, the number of parameters is positive cor-
related with the algorithm’s communication time. VQE and QNN
require more parameters, leading to more frequent communication
and thus significantly longer communication times in the baseline
system compared to QAOA, as shown in Figure 14 (a). For example,

Qtenon: Towards Low-Latency Architecture Integration for Accelerating HybridQuantum-Classical Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

QAOA QAOAVQE QNN QNN

Ti
m

e
(n

s)
Ti

m
e

(n
s)

Baseline
Qtenon

(b) Communication time breakdown of Qtenon

 when using GD for optimization.

(d) Communication time breakdown of Qtenon

 when using SPSA for optimization.

(a) Communication time comparison when

 using GD for optimzation.

(c) Communication time comparison when

 using SPSA for optimization.

2.7s

Speedup
Speedup

Speedup

98.1%

0.5% 1.4%

QAOA VQE QNN

18.4ms

2

4

6

8

10
94.3 ms

QAOA QNN

64.6%

21.4%
14%

0

3

6

9

12

q_set q_update q_acquire

85.2%

1.3% 13.5%

36.5%

5.5%
58%

Figure 14: Analysis of quantum-host communication time.

Table 5: Pulse generation speedup and computation require-
ment reduction.

QAOA VQE QNN
Speedup Reduction Speedup Reduction Speedup Reduction

GD 204.2× 96.8% 339.0× 98.3% 647.9× 98.9%
SPSA 23.3× 61.3% 13.5× 55.7% 27.8× 72.1%

under ideal assumptions, QNN requires up to 2.7𝑠 of quantum-
host communication time on the baseline system, while QAOA
requires 94.3𝑚𝑠 . Qtenon significantly reduces these times to 456𝜇𝑠
and 14.2𝜇𝑠 , achieving speedups of 5921.1× and 6647.2×, respectively.
For the SPSA method, the communication time in the baseline sys-
tem only depends on the number of algorithm iterations, so the
communication time is the same for all algorithms, as shown in
Figure 14 (c). By using incremental compilation, Qtenon only opti-
mizes the changed parameters. As a result, QAOA requires fewer
parameters and, therefore, needs less quantum-host communication
time compared to VQE and QNN on the Qtenon system.

To gain further insights into Qtenon’s communication charac-
teristics, we break down the communication time into three main
categories that correspond to three data communication instruc-
tions we defined earlier: q_set, q_update, and q_acquire. In the
case of GD optimization, the majority of Qtenon’s time is taken by
q_acquire instruction, given the massive count of transmission
time required. Specifically, the q_acquire instruction accounts for
85.2% of the communication time for QAOA and 98.1% for QNN, as
shown in Figure 14 (b). For SPSA optimization, most of the execu-
tion time is spent on the q_set and q_update instructions, as SPSA
optimization requires less data movement. The time breakdown
between QAOA and QNN reflects the higher frequency of parame-
ter updates in QNN, which also results in longer communication
delays—10𝜇𝑠 for QNN compared to 1.6𝜇𝑠 for QAOA.

Pulse Generation: Table 5 compares Qtenon with the baseline
system in terms of the pulse generation time. For the GD method,
only one parameter is updated at a time, while the rest of the

10.3ms
323ms 161ms

1.3ms0.7ms

239ms114ms

QAOA VQE QNN QAOA VQE QNN

Gradient Descent (GD) SPSA

40.8s
3.18s

76.3s

1.8ms

T
im

e
(n

s)

Baseline Qtenon-Boom Qtenon-Rocket

436ms

Figure 15: Host execution time comparison.

QAOA VQE QNN QAOA VQE QNNQAOA VQE QNN

Gradient Descent (GD) SPSA

RISC-V Default Qtenon Qtenon w/o schedule Qtenon w/ schedule

5

10

5

10

T
im

e
(

 s
)

T
im

e
(

 s
)

T
im

e
(m

s) 4

2

QAOA VQE QNN

T
im

e
(s

)

0.5

1

1.5

Gradient Descent (GD) SPSA

(a) Synchronization comparison (b) Scheduling comparison

6.6

4.42.7

2.8 2.7

2.5

1.4
1.3

10.1
3.4 3.5 2.6

Figure 16: The software optimization result of Qtenon.

quantum program remains unchanged. Using dynamic incremen-
tal compilation, Qtenon can leverage ’quantum locality’ to update
only the relevant parameters, thereby reducing computational re-
quirements. Specifically, the computation requirement is reduced
by 96.8%, 98.3%, and 98.9% for QAOA, VQE, and QNN, respectively.
This approach also delivers impressive speedups, with the gener-
ation time accelerating by 204.2×, 339.0×, and 647.9× for these
algorithms.

On the other hand, the SPSA method optimizes all parameters
simultaneously, which has less potential for reductions in compu-
tation. Nevertheless, Qtenon still achieves reductions in computa-
tional demand of 61.3%, 55.7%, and 72.1% for QAOA, VQE, and QNN,
respectively. Due to runtime incremental compilation, the need to
recompile the entire program is eliminated, resulting in speedups of
23.3×, 13.5×, and 27.8× compared to the baseline hardware system,
respectively.

Host Computation: The host computation time is profiled
under two core configurations, as shown in Figure 15. The host
computation time for the two cores is almost identical. Specifically,
Qtenon with Boom core achieves 308.7×, 357.9×, 175.0× of speedup
for QAOA, VQE, and QNN, respectively, using the GD method, and
461.4×, 123.8×, and 132.8× for QAOA, VQE, and QNN, respectively,
using the SPSA method. The performance gain mainly comes from
Qtenon’s ability to support dynamic incremental compilation and
quantum-host scheduling method supported by our fine-grained
synchronization technique.

7.4 Software Optimization
In this part, we compare the effectiveness of two software designs:
memory consistency policy (Section 6.2) and instruction scheduling
(Section 6.3) when running 64-qubit VQA.

Memory Consistency: Figure 16 (a) compares the quantum-
host transmission time using two synchronization methods: the
RISC-V default approach, which relies on the FENCE operation for
memory consistency, and Qtenon, which employs fine-grained syn-
chronization. When using the GD optimization method, most of the

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chenning Tao, Liqiang Lu, Size Zheng, Li-Wen Chang, Minghua Shen, Hanyu Zhang, Fangxin Liu, Kaiwen Zhou, and Jianwei Yin

64

1

2

3

4

5

128 192 256 320 64 128 192 256 320

3

6

9

12

15

3

6

9

12

15
Relative Time to 64 qubit
Communication Time

T
im

e
(

)

T
im

e
(

)

T
im

e
(m

s)
T

im
e

(m
s)

#qubit

7

14

21

28

35

64 128 192 256 320#qubit 64 128 192 256 320

1

2

3

4

5

R
elative T

im
e

R
elative T

im
e

R
elative T

im
e1.4

2.8

4.2

5.6

7

2

4

6

8

10

R
elative T

im
e2

4

6

8

10

0.1%

0.03%

Pulse generation
Host computation

Quantum execution

(a) Communication time (b) Host time
(c) Time breakdown

 with 256 qubits

VQE VQE

QAOAQAOA

77.5%

12.8%

9.6%

76% 15.9%

8.1%

Relative Time to 64 qubit
Host Time

QAOA

VQE

Quantum-host comm.

Figure 17: The scalability test of Qtenon.

communication time is spent retrieving data from the quantum con-
troller cache. Our memory consistency model significantly reduces
this transmission overhead through fine-grained synchronization,
achieving a more significant communication time reduction in
VQE and QNN compared to the SPSA optimization method. For
QAOA, since the transmission costs of both optimization methods
are closer, the resulting speedups are also more comparable, with
improvements of 2.7× and 2.5×, respectively.

Instruction Scheduling: Figure 16 (b) compares the host com-
putation time of our instruction scheduling method. Our instruc-
tion scheduling method achieves considerable performance gains
for VQAs under two optimization methods. For the GD method,
our scheduling method achieves 4.4×, 10.1×, and 3.4× speedup for
QAOA, VQE, and QNN, respectively. For the SPSA method, our
scheduling method achieves 6.6×, 3.5×, and 2.6× speedup, respec-
tively. This improvement comes from batching the measurement
results, which maximizes bus bandwidth usage and reduces data
transfer time.

7.5 Scalability
On the software side, our ISA design and optimization policies
support qubit expansion as long as sufficient QAddress space is
available. The address space of the QAddress is 239. However, two
hardware factors may limit stability. First, the cache size required
for the quantum controller increases linearly with the number of
qubits. For instance, controlling 256 qubits requires a cache size of
22.63MB. Second, the number of available pins on the chip imposes
a limitation. Each qubit requires two DACs, so the qubit count can
only be increased if the chip provides enough pins for ADC and
DAC connections, as well as sufficient SRAM for the cache design.

Figure 17 illustrates the scalability of Qtenon when executing
QAOA and VQE algorithms across an increasing number of qubits,
assuming sufficient cache and output connections. Figure 17(a) de-
picts the quantum-host communication time, which scales nearly
linearly with qubit number. At 320 qubits, VQE with SPSA optimiza-
tion requires only 34.4𝜇𝑠 , while QAOA with SPSA requires 12.5𝜇𝑠 .
The higher communication time for VQE stems from its greater
number of parameter updates compared to QAOA. Figure 17(b)
presents the classical computation time, which also grows almost
linearly. Here, QAOA and VQE require 11.8 ms and 6.4 ms, respec-
tively, for 320 qubits. Figure 17(c) details the time breakdown for

256 qubits, revealing that quantum execution dominates the run-
time. Pulse generation and host computation account for a growing
but smaller fraction, while quantum-host communication remains
minimal. Notably, pulse generation and host computation times
could be further reduced by integrating additional PGUs in the
quantum controller and leveraging more RISC-V processor cores.
These results demonstrate that Qtenon’s design retains efficiency
and scalability even as hardware systems expand.

8 Related Work
On the hardware side, FPGA-based systems are widely used to
control and measure superconducting quantum processing units
(QPUs) [14, 26, 37, 38]. These systems typically consist of three
components: room-temperature electronics hardware, FPGA con-
trol logic, and corresponding software, often implemented on top
of a quantum ISA. The room-temperature electronics hardware
manages signal conversion between the digital and analog do-
mains through three key modules: the Analog-to-Digital Converter
(ADC)/Digital-to-Analog Converter (DAC) for generating and de-
tecting intermediate frequency (IF) signals, the RF mixing module
for converting signals between IF and target frequencies, and the
Local Oscillator (LO) generation module for producing low-noise
LO signals. The FPGA acts as a gateway, translating high-level
quantum circuit definitions into precise control pulses that are sent
to the electronics hardware for qubit manipulation.

Various software approaches have been proposed to control
current quantum hardware for noisy intermediate-scale quantum
(NISQ) applications [5, 13, 15, 37]. For example, eQASM [13], HiSEP-
Q [15], and QubiC [38] introduce specialized ISAs tailored to their
respective hardware architectures. Additionally, efforts such as
QUASAR [5] aim to leverage the computational capabilities of RISC-
V by extending it with quantum-specific ISAs. For fault-tolerant
quantum computation (FTQC) [28, 33, 35]where quantumprograms
operate on encoded logical qubits, each composed of thousands of
physical qubits. Some dedicated ISAs for those applications have
also been proposed [39].

9 Conclusion
Accelerating hybrid quantum-classical algorithms is of vital impor-
tance for quantum systems. Previous decoupled systems lack both
hardware support for low-latency communication and software
support for fine-grained optimization. In this paper, we propose
Qtenon, a tightly coupled system for efficient hybrid quantum-
classical algorithm acceleration. For hardware design, we propose
a unified memory hierarchy, an efficient quantum controller, and a
multi-stage processing pipeline. For software design, we propose
ISA for data communication and computation, which enables fine-
grained synchronization and efficient scheduling. In evaluation, we
achieve up to 14.9× end-to-end speedup compared to state-of-the-
art work.

Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (No.62472374) and the Zhejiang Provincial Natural
Science Foundation of China under Grant (No.LR25F020002).

Qtenon: Towards Low-Latency Architecture Integration for Accelerating HybridQuantum-Classical Computing ISCA ’25, June 21–25, 2025, Tokyo, Japan

References
[1] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Report
UCB/EECS-2016-17. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a Scala embedded language. In Proceedings of the 49th Annual Design
Automation Conference (San Francisco, California) (DAC ’12). Association for
Computing Machinery, New York, NY, USA, 1216–1225. doi:10.1145/2228360.
2228584

[3] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Water-
man, Jonathan Bachrach, and Krste Asanovic. 2019. FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA)
(FPGA ’19). Association for Computing Machinery, New York, NY, USA, 330–339.
doi:10.1145/3289602.3293894

[4] Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li, Komal
Pandya, and Alessandro Summer. 2024. A review on Quantum Approximate
Optimization Algorithm and its variants. Physics Reports 1068 (June 2024), 1–66.
doi:10.1016/j.physrep.2024.03.002

[5] Anastasiia Butko, George Michelogiannakis, Samuel Williams, Costin Iancu,
David Donofrio, John Shalf, Jonathan Carter, and Irfan Siddiqi. 2020. Understand-
ing Quantum Control Processor Capabilities and Limitations through Circuit
Characterization. In 2020 International Conference on Rebooting Computing (ICRC).
IEEE Computer Society, Los Alamitos, CA, USA, 66–75. doi:10.1109/ICRC2020.
2020.00011

[6] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles. 2021. Variational quantum algorithms. Nature Reviews Physics 3,
9 (Aug. 2021), 625–644. doi:10.1038/s42254-021-00348-9

[7] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S.
Bishop, Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah, John Smolin, Jay M.
Gambetta, and Blake R. Johnson. 2022. OpenQASM3: A Broader and Deeper
Quantum Assembly Language. ACM Transactions on Quantum Computing 3, 3,
Article 12 (Sept. 2022), 50 pages. doi:10.1145/3505636

[8] Siddharth Dangwal, Gokul Subramanian Ravi, Poulami Das, Kaitlin N. Smith,
Jonathan Mark Baker, and Frederic T. Chong. 2024. VarSaw: Application-tailored
Measurement Error Mitigation for Variational Quantum Algorithms. In Proceed-
ings of the 28th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 4 (Vancouver, BC, Canada) (ASP-
LOS ’23). Association for Computing Machinery, New York, NY, USA, 362–377.
doi:10.1145/3623278.3624764

[9] Suguru Endo, Jinzhao Sun, Ying Li, Simon C Benjamin, and Xiao Yuan. 2020.
Variational quantum simulation of general processes. Physical Review Letters 125,
1 (2020), 010501.

[10] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approxi-
mate Optimization Algorithm. arXiv:1411.4028 [quant-ph] https://arxiv.org/abs/
1411.4028

[11] Five EmbedDev. 2023. Control and Status Register (CSR) Instructions. https:
//five-embeddev.com/riscv-isa-manual/latest/csr.html Accessed: 2024-11-11.

[12] Five EmbedDev. 2023. Counters. https://five-embeddev.com/riscv-isa-manual/
latest/counters.html Accessed: 2024-11-11.

[13] X. Fu, L. Riesebos, M. A. Rol, Jeroen van Straten, J. van Someren, N. Khammassi,
I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J.
Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels. 2019.
eQASM: An Executable Quantum Instruction Set Architecture. In 2019 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
224–237. doi:10.1109/HPCA.2019.00040

[14] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L.
Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L.
DiCarlo, and K. Bertels. 2017. An experimental microarchitecture for a supercon-
ducting quantum processor. In Proceedings of the 50th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (Cambridge, Massachusetts) (MICRO-
50 ’17). Association for Computing Machinery, New York, NY, USA, 813–825.
doi:10.1145/3123939.3123952

[15] Xiaorang Guo, Kun Qin, and Martin Schulz. 2023. HiSEP-Q: A Highly Scalable
and Efficient Quantum Control Processor for Superconducting Qubits. In 2023
IEEE 41st International Conference on Computer Design (ICCD). IEEE Computer
Society, Los Alamitos, CA, USA, 86–93. doi:10.1109/ICCD58817.2023.00023

[16] He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing Tian, Shi-Jie Wei, Xiaoming
Sun, Wan-Su Bao, and Gui-Lu Long. 2023. Near-term quantum computing tech-
niques: Variational quantum algorithms, error mitigation, circuit compilation,

benchmarking and classical simulation. Science China Physics, Mechanics &
Astronomy 66, 5 (2023), 250302.

[17] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake
Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W.
Cross, Blake R. Johnson, and Jay M. Gambetta. 2024. Quantum computing with
Qiskit. arXiv:2405.08810 [quant-ph] https://arxiv.org/abs/2405.08810

[18] Mingrui Jiang, Keyi Shan, ChengpingHe, and Can Li. 2023. Efficient combinatorial
optimization by quantum-inspired parallel annealing in analogue memristor
crossbar. Nature Communications 14, 1 (2023), 5927.

[19] Yuwei Jin, Zirui Li, Fei Hua, Tianyi Hao, Huiyang Zhou, Yipeng Huang, and
Eddy Z Zhang. 2024. Tetris: A Compilation Framework for VQA Applications in
Quantum Computing. In 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA). IEEE, 277–292.

[20] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanovic. 2018. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System
Simulation in the Public Cloud. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 29–42. doi:10.1109/ISCA.2018.00014

[21] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver.
2019. A quantum engineer’s guide to superconducting qubits. Applied Physics
Reviews 6, 2 (June 2019). doi:10.1063/1.5089550

[22] Vladimir Kremenetski, Anuj Apte, Tad Hogg, Stuart Hadfield, and Norm M.
Tubman. 2023. Quantum Alternating Operator Ansatz (QAOA) beyond low
depth with gradually changing unitaries. arXiv:2305.04455 [quant-ph] https:
//arxiv.org/abs/2305.04455

[23] Zhiding Liang, Zhixin Song, Jinglei Cheng, Zichang He, Ji Liu, Hanrui Wang,
Ruiyang Qin, Yiru Wang, Song Han, Xuehai Qian, et al. 2023. Hybrid gate-
pulse model for variational quantum algorithms. In 2023 60th ACM/IEEE Design
Automation Conference (DAC). IEEE, 1–6.

[24] Satvik Maurya and Swamit Tannu. 2022. COMPAQT: Compressed Waveform
Memory Architecture for Scalable Qubit Control. In 2022 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE. doi:10.1109/micro56248.
2022.00076

[25] Honghui Shang, Yi Fan, Li Shen, Chu Guo, Jie Liu, Xiaohui Duan, Fang Li, and
Zhenyu Li. 2023. Towards practical and massively parallel quantum computing
emulation for quantum chemistry. npj Quantum Information 9, 1 (2023), 33.

[26] Leandro Stefanazzi, Kenneth Treptow, Neal Wilcer, Chris Stoughton, Collin
Bradford, Sho Uemura, Silvia Zorzetti, Salvatore Montella, Gustavo Cancelo,
Sara Sussman, Andrew Houck, Shefali Saxena, Horacio Arnaldi, Ankur Agrawal,
Helin Zhang, Chunyang Ding, and David I. Schuster. 2022. The QICK (Quantum
Instrumentation Control Kit): Readout and control for qubits and detectors.
Review of Scientific Instruments 93, 4 (April 2022). doi:10.1063/5.0076249

[27] Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan Baker,
James Ang, and Ang Li. 2022. EQC: ensembled quantum computing for variational
quantum algorithms. In Proceedings of the 49th Annual International Symposium
on Computer Architecture (New York, New York) (ISCA ’22). Association for
Computing Machinery, New York, NY, USA, 59–71. doi:10.1145/3470496.3527434

[28] Daniel Bochen Tan, Murphy Yuezhen Niu, and Craig Gidney. 2024. A SAT
Scalpel for Lattice Surgery: Representation and Synthesis of Subroutines for
Surface-Code Fault-Tolerant Quantum Computing. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). IEEE, 325–339. doi:10.
1109/isca59077.2024.00032

[29] Siwei Tan, Mingqian Yu, Andre Python, Yongheng Shang, Tingting Li, Liqiang
Lu, and Jianwei Yin. 2023. HyQSAT: A Hybrid Approach for 3-SAT Prob-
lems by Integrating Quantum Annealer with CDCL. In 2023 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). 731–744.
doi:10.1109/HPCA56546.2023.10071022

[30] Wesley W Terpstra. 2017. TileLink: A Free And Open Source, High Perfor-
mance Scalable Cache Coherent Fabric Designed for RISC-V. In Proc. 7th RISC-V
Workshop.

[31] Wuwei Tian, Xinghui Jia, Siwei Tan, Zixuan Song, Liqiang Lu, and Jianwei Yin.
2023. QPulseLib: Accelerating the Pulse Generation of Quantum Circuit with
Reusable Patterns. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD). 01–09. doi:10.1109/ICCAD57390.2023.10323711

[32] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li,
Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan
Tennyson. 2022. The Variational Quantum Eigensolver: A review of methods
and best practices. Physics Reports 986 (Nov. 2022), 1–128. doi:10.1016/j.physrep.
2022.08.003

[33] Suhas Vittal, Poulami Das, and Moinuddin Qureshi. 2023. Astrea: Accurate
Quantum Error-Decoding via Practical Minimum-Weight Perfect-Matching. In
Proceedings of the 50th Annual International Symposium on Computer Architecture
(Orlando, FL, USA) (ISCA ’23). Association for Computing Machinery, New York,
NY, USA, Article 2, 16 pages. doi:10.1145/3579371.3589037

[34] Meng Wang, Poulami Das, and Prashant J. Nair. 2024. Qoncord: A Multi-
Device Job Scheduling Framework for Variational Quantum Algorithms.
arXiv:2409.12432 [quant-ph] https://arxiv.org/abs/2409.12432

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/3289602.3293894
https://doi.org/10.1016/j.physrep.2024.03.002
https://doi.org/10.1109/ICRC2020.2020.00011
https://doi.org/10.1109/ICRC2020.2020.00011
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1145/3505636
https://doi.org/10.1145/3623278.3624764
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://five-embeddev.com/riscv-isa-manual/latest/csr.html
https://five-embeddev.com/riscv-isa-manual/latest/csr.html
https://five-embeddev.com/riscv-isa-manual/latest/counters.html
https://five-embeddev.com/riscv-isa-manual/latest/counters.html
https://doi.org/10.1109/HPCA.2019.00040
https://doi.org/10.1145/3123939.3123952
https://doi.org/10.1109/ICCD58817.2023.00023
https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2405.08810
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1063/1.5089550
https://arxiv.org/abs/2305.04455
https://arxiv.org/abs/2305.04455
https://arxiv.org/abs/2305.04455
https://doi.org/10.1109/micro56248.2022.00076
https://doi.org/10.1109/micro56248.2022.00076
https://doi.org/10.1063/5.0076249
https://doi.org/10.1145/3470496.3527434
https://doi.org/10.1109/isca59077.2024.00032
https://doi.org/10.1109/isca59077.2024.00032
https://doi.org/10.1109/HPCA56546.2023.10071022
https://doi.org/10.1109/ICCAD57390.2023.10323711
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1145/3579371.3589037
https://arxiv.org/abs/2409.12432
https://arxiv.org/abs/2409.12432

ISCA ’25, June 21–25, 2025, Tokyo, Japan Chenning Tao, Liqiang Lu, Size Zheng, Li-Wen Chang, Minghua Shen, Hanyu Zhang, Fangxin Liu, Kaiwen Zhou, and Jianwei Yin

[35] Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding,
and Yuan Xie. 2022. A synthesis framework for stitching surface code with
superconducting quantum devices. In Proceedings of the 49th Annual Inter-
national Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 337–350.
doi:10.1145/3470496.3527381

[36] Pengcheng Xu and Yun Liang. 2020. Automatic Code Generation for Rocket
Chip RoCC Accelerators. In Proceedings of the Fourth Workshop on Computer
Architecture Research with RISC-V (CARRV).

[37] Yilun Xu, Gang Huang, Jan Balewski, Ravi Naik, Alexis Morvan, Bradley Mitchell,
Kasra Nowrouzi, David I Santiago, and Irfan Siddiqi. 2021. QubiC: An open-source
FPGA-based control and measurement system for superconducting quantum
information processors. IEEE Transactions on Quantum Engineering 2 (2021),
1–11.

[38] Yilun Xu, Gang Huang, Neelay Fruitwala, Abhi Rajagopala, Ravi K. Naik, Kasra
Nowrouzi, David I. Santiago, and Irfan Siddiqi. 2023. QubiC 2.0: An Extensible
Open-Source Qubit Control System Capable of Mid-Circuit Measurement and
Feed-Forward. arXiv:2309.10333 [quant-ph] https://arxiv.org/abs/2309.10333

[39] Fang Zhang, Xing Zhu, Rui Chao, Cupjin Huang, Linghang Kong, Guoyang
Chen, Dawei Ding, Haishan Feng, Yihuai Gao, Xiaotong Ni, Liwei Qiu, Zhe
Wei, Yueming Yang, Yang Zhao, Yaoyun Shi, Weifeng Zhang, Peng Zhou, and
Jianxin Chen. 2023. A Classical Architecture for Digital Quantum Computers.
ACM Transactions on Quantum Computing 5, 1, Article 3 (Dec. 2023), 24 pages.
doi:10.1145/3626199

[40] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. (May 2020).

[41] Renxin Zhao and Shi Wang. 2021. A review of Quantum Neural Networks:
Methods, Models, Dilemma. arXiv:2109.01840 [cs.ET] https://arxiv.org/abs/2109.
01840

https://doi.org/10.1145/3470496.3527381
https://arxiv.org/abs/2309.10333
https://arxiv.org/abs/2309.10333
https://doi.org/10.1145/3626199
https://arxiv.org/abs/2109.01840
https://arxiv.org/abs/2109.01840
https://arxiv.org/abs/2109.01840

	Abstract
	1 Introduction
	2 Background
	2.1 Hybrid Quantum-Classical Algorithm
	2.2 Existing Quantum Hardware Design
	2.3 Existing Quantum Software Design

	3 Motivational Example
	4 Qtenon Overview
	5 Hardware Design of Qtenon
	5.1 Unified Memory Hierarchy
	5.2 Quantum Controller
	5.3 Multi-stage Hardware Pipeline

	6 Software Design of Qtenon
	6.1 ISA Extension and Compilation
	6.2 Memory Consistency
	6.3 Efficient Quantum-Host Scheduling

	7 Experiment
	7.1 Experiment Setup
	7.2 Performance Comparison
	7.3 Latency Profiling
	7.4 Software Optimization
	7.5 Scalability

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

