
C4: Contrastive Cross-Language Code Clone Detection

Chenning Tao∗

Zhejiang University

Hangzhou, China

tcn@zju.edu.cn

Qi Zhan∗

Zhejiang University

Hangzhou, China

qizhan@zju.edu.cn

Xing Hu†

School of Software Technology, Zhejiang University

Ningbo, China

xinghu@zju.edu.cn

Xin Xia
Software Engineering Application Technology Lab,

Huawei

China

xin.xia@acm.org

ABSTRACT

During software development, developers introduce code clones

by reusing existing code to improve programming productivity.

Considering the detrimental effects on software maintenance and

evolution, many techniques are proposed to detect code clones.

Existing approaches are mainly used to detect clones written in the

same programming language. However, it is common to develop

programs with the same functionality but in different programming

languages to support various platforms. In this paper, we propose a

new approach named C4, referring to Contrastive Cross-language

Code Clone detection model. It can detect cross-language clones

with learned representations effectively. C4 exploits the pre-trained

model CodeBERT to convert programs in different languages into

high-dimensional vector representations. In addition, we fine tune

the C4 model through a constrastive learning objective that can

effectively recognize clone pairs and non-clone pairs. To evaluate

the effectiveness of our approach, we conduct extensive experi-

ments on the dataset proposed by CLCDSA. Experimental results

show that C4 achieves scores of 0.94, 0.90, and 0.92 in terms of

precision, recall and F-measure and substantially outperforms the

state-of-the-art baselines.

KEYWORDS

Code Clone Detection, Neural Networks, Cross-Language, Con-

trastive Learning

ACM Reference Format:

Chenning Tao, Qi Zhan, Xing Hu, and Xin Xia. 2022. C4: Contrastive Cross-

Language Code Clone Detection. In 30th International Conference on Program

Comprehension (ICPC ’22), May 16–17, 2022, Virtual Event, USA. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3524610.3527911

∗Both authors contributed equally to this research.
†Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16–17, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527911

1 INTRODUCTION

In a software system, similar or identical code snippets that achieve

the same functionality are called code clones. Previous research

has shown that in large software systems, almost 20-30% programs

are cloned [1]. The existence of code clones can be an issue con-

sidering the following reasons. Duplicated code blocks in source

code improve the complexity to the program thus resulting in more

difficult software maintenance [36]. The change to the code frag-

ments will also needed to be implemented on other clone blocks

as well and will lead to fault propagation if changes are done in-

consistently. Code clones are also responsible for unnecessarily big

code size, causing inconvenience to both the developers and main-

tainers. Thus, it requires to be detected and managed despite code

clones enable fast software development by allowing programmers

to copying and pasting the source code.

In recent years, cross language clone detection have attracted

attention from researchers. Cross language clones are caused by

different platforms and programming languages. Developers have

to develop the same functionality programs written in different pro-

gramming languages for different platforms, such as Apps in C/C#

for a Windows phone, Java for an Android phone and Objective-

C for an iPhone [4, 22]. Different from traditional clones, cross

language clones are created intentionally by developers and are

often unavoidable and cannot be removed [5, 22]. Detecting cross

language clone automatically is helpful for developers to manage

cross-language software systems in an easy, time-effective and

cost-effective way.

According to existing studies [2], it is a common taxonomy to

group code clones into four types: Type-I, Type-II, Type-III, and

Type-IV. The first three types fit in the category of syntactic clone

while the fourth fits in the category of semantic clone. Thus, cross

language clones are Type-IV clones which have the same function-

ality but are quite different in implementations.

Many traditional approaches such as CCFinder [14] , Deckard [13],

and SourcerCC [27] focus on detecting and analyzing Type-I to

Type-III clones but limited in Type-IV clones. Recently, deep learn-

ing approaches are proposed to detect Type-IV clones. Approaches

like CCLearner [17], ASTNN [45], and FA-AST [39] combined static

analysis methods with deep learning achieve some success in de-

tecting Type-IV clones.

However, only a few models are focused on cross-language clone

detection. The most relevant studies are LICCA [35], CLCMiner [5],

413

30th IEEE/ACM International Conference on Program Comprehension

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524610.3527911&domain=pdf&date_stamp=2022-10-20

ICPC ’22, May 16–17, 2022, Virtual Event, USA Tao et al.

and CLCDSA [22]. LICCA needs the SSQSA [25] platform to gener-

ate common intermediate representations for different languages

and needs the code to be of equal length, which seriously limits its

application in the real scenario. CLCMiner does not require those

but it can only work with code with revision history, thus also

having serious limitations. CLCDSA does not require the interme-

diate representation or revision history, but it requires an Abstract

Syntax Tree (AST) to extract features manually and its performance

is not very well. The limited application range and low precision

and recall make it hard to be applied in real-world scenarios.

Compared to a single language clone detect, cross-language

clone detection is much more difficult. To detect cross-language

code clones effectively, our task is challenging since:

• Programs are heterogeneous. Basic grammar andAPIs can

be very different across different programming languages. It

is hard for static analysis tools to illustrate different internal

mechanisms and characteristics in programs. Deep learning

based approaches are effective in mapping code snippets into

high-dimensional vector space. However, many existing deep

learning approaches are proposed to detect single language

code clones [40, 41, 45].

• Distinguish clone/non-clone pairs. Distinguishing clone

or non-clone pairs in high-dimensional vector space is diffi-

cult. Existing studies usually measure the vector distances

(e.g., Cosine Similarity) to detect clone pairs. However, two

code fragments having identical functionality but different

in lexical and syntax may not be recognized as similar by the

existing models. Likewise, these models cannot distinguish

between two code fragments that differ in functionalities

but share a close syntactic resemblance.

To address the above issues, we propose a new approach named

C4 that exploits the pre-trained model CodeBERT [9] with a con-

trastive learning objective. � First, CodeBERT is a pre-trained

model on six different programming languages and achieves success

in programming language processing. It can map cross-language

programs into the same high-dimensional vector space effectively.

Therefore, we exploit the CodeBERT to get program representations.

� Second, we exploit the contrastive learning to make functionally

equivalent code closer and distinct code further. Existing contrastive

learning works [3, 32, 43] usually employ the following framework:

pull together an anchor and a “positive” sample in the embedding

space, and push apart the anchor from many “negative” samples.

Since no labels are available, a positive pair often consists of data

augmentations of the sample, and negative pairs are formed by

the anchor and randomly chosen samples from the minibatch [15].

However, this framework is not ideal for our task since the ran-

domly selected negative sample may actually be a positive clone

pair. It will mislead the model to recognize clone pairs as non-clone

pairs. To address this problem, we use contrastive learning in a

supervised way and manually select negative samples from the

batch.

To evaluate the effectiveness of our proposed approach C4, we

conduct experiments on the CLCDSA dataset proposed by Nafi et

al. [22]. Experimental results show that our approach outperforms

the state-of-the-art approaches significantly. Compared to the state-

of-the-art cross-language clone detection models, our approach

improves from 0.65 to 0.92 which improves about 41.5% in terms

of the F1 score. In addition, compared with CodeBERT without

contrastive learning, our approach improves 13.3% and 3.4% in terms

of the Precision and F1 score.We also show program representations

learned from C4, the distance between clone pairs is closer and

non-clone pairs are further. It further proves the effectiveness of

C4 on the cross-language clone detection.

In summary, themain contributions of this paper are summarized

as follows:

• We propose a new cross-language clone detection method

named C4. It exploits the CodeBERT with contrastive learn-

ing to learn code representations effectively.

• We evaluate the effectiveness of C4 on the CLCDSA dataset.

The experimental results show thatC4 outperforms the state-

of-the-art clone detection approaches.

The remainder of the paper is organized as follows: Section 2

presents the background information of our paper. Section 3 dis-

cusses the architectural design of the model. Section 4 and Section

5 briefly discusses the evaluation and validation steps and results

of C4. Section 6 describes the probable threats to validity and how

those were addressed. Section 7 describes closely related work and

Section 8 concludes the paper.

2 BACKGROUND

2.1 Code Clone

In software development, similar fragments that share the same

functionality are called clones. Software clones are detrimental

most time since they increase maintenance costs and make the

system difficult to evolve, which lead to the development of clone

detection.

Roy et al. [26] summarized four type of code clones:

• Type-I Clone: Identical code fragments except for variations

in white-spaces and comments.

• Type-II Clone: Structurally/syntactically identical fragments

except for variations in the names of identifiers, literals,

types, layout and comments.

• Type-III Clone: Code fragments that exhibit similarity as

of Type-II clones and also allow further differences such

as additions, deletions or modifications of statements are

known as Type-III clones.

• Type-IV Clone: Code fragments that exhibit identical func-

tional behaviour but can be implemented through very dif-

ferent syntactic structures.

In this paper, we detect programs with the same functionality

but written in different programming languages. Different from

single language code clones, cross-language clones are created

intentionally because of multi-platforms development. Thus, cross-

language clone pairs referred in this paper are Type-IV clone pairs.

As the cross-language clones are unavoidable, we need to detect

and manage them for developers. Figure 1 shows an example of

cross-language clone pair. We can find that the two programs aim

to “count vowels permutations” but written in C++ and Python,

respectively. The C++ language code and Python language code

414

C4: Contrastive Cross-Language Code Clone Detection ICPC ’22, May 16–17, 2022, Virtual Event, USA

int countVowelPermutation(int n) {
long long mod = 1e9 + 7;
vector<long long> dp(5, 1);
vector<long long> ndp(5);
for (int i = 2; i <= n; ++i) {

ndp[0] = (dp[1] + dp[2] + dp[4]) % mod;
ndp[1] = (dp[0] + dp[2]) % mod;
ndp[2] = (dp[1] + dp[3]) % mod;
ndp[3] = dp[2];
ndp[4] = (dp[2] + dp[3]) % mod;
dp = ndp;

}
return accumulate(dp.begin(), dp.end(), 0LL) % mod;

}

def countVowelPermutation(self, n: int) -> int:
factor = np.mat([(0, 1, 0, 0, 0),

(1, 0, 1, 0, 0),
(1, 1, 0, 1, 1),
(0, 0, 1, 0, 1),
(1, 0, 0, 0, 0)], np.dtype('O'))

res = np.mat([(1, 1, 1, 1, 1)], np.dtype('O'))
n -= 1
while n > 0:

if n % 2 == 1:
res = res * factor % 1000000007

factor = factor * factor % 1000000007
n = n // 2

return res.sum() % 1000000007

Figure 1: Cross-language clone example

represent same functionality whereas very different in syntax. Com-

pared with clone detection in the same programming languages,

cross-languages clone detection has more challenges:

• Basic grammar and characteristic are very different in differ-

ent programming languages, it is difficult to measure code

similarity through syntax analysis.

• There are no general intermediate representation for dif-

ferent programming languages, we need to propose a new

representation for all languages in order to measure code

similarity.

Therefore, we propose C4 to address these challenges. C4 uses

the CodeBERT as pre-trained model to convert different languages

code fragments into the same vector representations so that we can

unify process code snippets in different programming languages

based on the same intermediate representations .

2.2 Pre-trained Model

Pre-trained models have shown to be effective for NLP tasks and

achieved the state-of-the-art results among many tasks [8, 19, 24,

38]. Recently, pre-trained models are also exploited in programming

language processing tasks and achieve great results. For example,

Liu et al. [18] apply the BERT model to the code completion task.

Gao et al. [11] exploit the BERT to identify whether a TODO com-

ment is obsolete and should be removed. In the following subsec-

tions, wewill introduce the background information of Transformer,

BERT, and CodeBERT.

2.2.1 Transformer. Transformer [34] is a model originally designed

for machine translation. Later, it is proven useful in other areas of

natural language processing and also boosts the use of pre-trained

models, such as BERT.

The overall architecture consists of an encoder and a decoder.

The Encoder consists of a self-attention layer and a feed-forward

layer. The attention layer assists the encoder in looking at additional

words in the input text while encoding a certain word. The output

of this is then fed into a feed-forward layer. Both of these layers are

included in the decoder, but between them is an encoder-decoder

attention layer that assists the decoder in focusing on key sections

of the input sequence.

2.2.2 BERT. Bidirectional Encoder Representations from Trans-

former (BERT) [8] applies bidirectional training of Transformer

into language modeling. It has a deeper sense of language context

and is trained on large-scale plain texts with self-supervised learn-

ing objectives. It can be reused for multiple related tasks through

fine-tuning and achieving state-of-the-art performance.

BERT was pre-trained on two unsupervised tasks: Masked LM

and Next Sentence Prediction (NSP). Masked LM masked 15% of

words in each sentence randomly and let the model predict the

masked word. NSP tries to improve the model’s understanding of

sentence relationship by letting the model predict whether these

two languages are continuous.

The original paper described two model architecture: BERTbase
and BERTlarge. They all consist of stacks of Transformer encoders.

The base model has 12 layers, the embedding size is 768 and the

number of attention head is 12. The large model doubled layer

number and changed embedding size to 1024 and attention head to

16.

2.2.3 CodeBERT. CodeBERT [9] is a bimodal pre-trained model

for programming language (PL) and natural language (NL). It is

based on RoBERTa [20] and utilizes both bimodal instances of NL-

PL pairs and a large amount of PL pairs by using standard masked

language modeling [8] and replaced token detection [7].

It is trained on 2.1M bimodal datapoints and 6.4M unimodal

code snippets across six programming languages, including Ruby,

JavaScript, Go, Python, Java, and PHP. In the pre-training and fine

tuning phase, themodel takes the input format as [𝐶𝐿𝑆], 𝜔1, 𝜔2, ...𝜔𝑛,
[𝑆𝐸𝑃] and outputs a contextual vector representation of each to-
ken and the representation of [𝐶𝐿𝑆], which could be deemed as
sentence representation.

The experimental results show that CodeBERT achieves the

state-of-the-art results on various software engineering tasks, for

example, code search and code documentation generation. Con-

sidering that CodeBERT is pre-trained on the huge code corpus

and learns universal representations for programs in different lan-

guages, we adopt CodeBERT to map programs in our corpus into

high-dimensional vectors. We exploit it as an initialization of our

approach C4 and fine-tune it with the contrasive learning.

415

ICPC ’22, May 16–17, 2022, Virtual Event, USA Tao et al.

2.3 Contrastive Learning

Contrastive learning is first introduced by Hadsell et al. [12] for

classification. Unlike loss functions that sum over samples, its loss

function runs over pairs of examples. The original contrastive learn-

ing is defined as follows. Assume 𝑋1, 𝑋2 is a pair of input vectors.
Let 𝑌 be the label assigned to this pair. 𝑌 = 1 means 𝑋1 and 𝑋2
are similar, 𝑌 = 0 means they are different. The distance between

two vector is defined by 𝐷𝑤 (𝑋1, 𝑋2). Then the loss function can be
written as 𝐿(𝑊, (𝑌,𝑋1, 𝑋2)

𝑖) = (1 − 𝑌)𝐿𝑆 (𝐷
𝑖
𝑊) + 𝑌𝐿𝐷 (𝐷

𝑖
𝑊). 𝐿𝑆 is

the partial loss function for a pair of similar pairs, 𝐿𝐷 is the partial

loss function for a pair of different pairs.

Loss function is one of the most important part in contrastive

learning. Since Hadsell et al. [12], a variety of loss functions have

been proposed for different situations such as Triplet Loss [28]

and N-pair Loss [29]. They improve the loss function so that it can

process multiple negative examples at the same time.

The overall framework of contrastive learning can be described

as follows:

• An encoder 𝑓 (·) that can convert a given sample into vector
representation.

• A batch of examples {𝑥1, ..., 𝑥𝑛}where𝑛 represents the batch
size.

• A similarity function sim(x, y) which can represent the sim-
ilarity of two vector, for example, many works [5, 22] use

cosine as the similarity function.

To train a model with contrastive loss objective, for each exam-

ple 𝑥𝑖 in the batch, we need to use the encoder to get the vector
representation of the example 𝑣𝑖 = 𝑓 (𝑥𝑖). Next, for each 𝑣𝑖 , we have
to construct the positive examples and negative examples for this

particular sample. After the selection, we will use the similarity

function sim(x, y) to get the distances between positive/negative
examples and put it into the loss function.

Many approaches achieve the state-of-the-art results in their

fields using contrastive learning, such as text generation [44], sen-

tence embedding [42], and pre-trained Language Models [23].

3 PROPOSED APPROACH

In this section, we present the overall design and implementation

details of our proposed model.

3.1 Overall Framework

The overall framework of C4 is illustrated in Figure 2. We process

all programs into batches where each batch consists of code snip-

pets that belong to the same task but used different programming

languages. For each code snippet, we exploit the CodeBERT to

get its representation. Then, we use contrastive learning for every

code snippet in the batch. It can make clone pairs much closer

and non-clone pairs further in the high-dimensional vector space.

Our approach mainly consists of three parts, including a) Data Pro-

cess; b) Get Code Representation; c) Contrastive Learning. We will

introduce these three parts in the following subsections.

3.2 Data Process

Data Processing is the first step to build our approach. We need to

construct clone pairs and non-clone pairs. The details can be found

in Section 4.2.

3.3 Code Representation

We use the CodeBERT as our pre-trained model to get code rep-

resentations. In other words, we exploit the CodeBERT to encode

programs into vector representations, i.e.,
𝑓

𝑐 → 𝑣 where 𝑓 means
CodeBERT, 𝑐 means the source code, and 𝑣 means the vector em-
bedding for the corresponding source code.

We fine tune the CodeBERT model to get a better vector embed-

ding for the code clone downstream task [8]. The code snippets

is first split into a list of words, then it is put in the CodeBERT’s

tokenizer. The output of the tokenizer is then concatenated with

CLS token in the front and SEP token in the back. The format of this

output is [𝐶𝐿𝑆], 𝜔1, 𝜔2, ..𝜔𝑛, [𝑆𝐸𝑃]. Then, we use the tokenizer’s
function to convert them into ids before put it into the model. Note

that we limit each code snippet length to be less than 512 since

CodeBERT cannot process input longer than that. During the fine

tuning, the output of CodeBERT includes the contextual vector

representation of each token and the representation of [𝐶𝐿𝑆] (sen-
tence representation). The parameters of CodeBERT are learned to

minimize the contrastive loss.

3.4 Contrastive Learning

The loss function we used is shown in Equation 1. Different from ex-

isting works, we use a combination of N-pair loss and Soft-Nearest

Neighbor loss [10].

𝐿𝑁 = − log
exp

(
sim(x, x+)/𝜏

)

exp (sim(x, x+)/𝜏) +
∑𝑁−1

𝑗=1 exp
(
sim(x, x−

j
)/𝜏

) (1)

𝑥 is the anchor sample, 𝑥+ is the positive sample (i.e., 𝑥 and 𝑥+

is a clone pair), and 𝑥− is the negative sample (i.e., 𝑥 and 𝑥− is a
non-clone pair). 𝜏 is a hyperparameter that we tune to scale the
penalties on negative samples.

As shown in Figure 2, C4 exploits the contrastive learning to

learn effective representation by pulling clones together and push-

ing apart non-clones. Assumewe have a similarity function sim(vi, vj)
and its codomain is [0, 1]. The details of pulling and pushing are
shown as follows:

• Pull Pulling pairs together means getting the result of simi-

larity function closer to 1.

• Push Pushing pairs apart means getting the result of simi-

larity function closer to 0.

For the similarity evaluation we use

sim(u, v) =
𝒖 · 𝒗

‖𝒖‖‖𝒗‖
(2)

where sim(u, v) ∈ [−1, 1].

For term
∑𝑁−1

𝑗=1 exp
(
sim(x, x−

j
)/𝜏

)
, if sim(x, x−) < 0, the 𝜏 will

decrease the sensitivity of loss function. Therefore, we transform

the codomain of sim(u, v) from [−1, 1] to [0, 1] using a linear trans-
formation.

416

C4: Contrastive Cross-Language Code Clone Detection ICPC ’22, May 16–17, 2022, Virtual Event, USA

Figure 2: Overview of our approach

A detailed description of how to construct negative samples and

compute contrastive loss is illustrated in Algorithm 1.

Algorithm 1: Contrastive loss computation

Input: A batch of clone pairs, 𝐵;
Output: Contrastive loss, 𝐿𝑁 ;

1 foreach pair 𝑃𝑖 in 𝐵 do

2 𝑥, 𝑥+ ← 𝑃𝑖 .𝑐𝑜𝑑𝑒 ;

3 𝑆𝑝𝑜𝑠 ← sim(x, x+);

4 foreach pair 𝑃 𝑗 (𝑖 ≠ 𝑗)in 𝐵 do

5 if 𝑃𝑖 .𝑡𝑎𝑠𝑘 ≠ 𝑃 𝑗 .𝑡𝑎𝑠𝑘 then

6 𝑥−𝑗1 , 𝑥
−
𝑗2
← 𝑃 𝑗 .𝑐𝑜𝑑𝑒 ;

7 𝑆𝑛𝑎𝑔𝑗1 ← sim(x, x−
j1
);

8 𝑆𝑛𝑎𝑔𝑗2 ← sim(x, x−
j2
);

9 end

10 end

11 𝐿𝑁𝑖 = − log(
𝑆𝑝𝑜𝑠

𝑆𝑝𝑜𝑠+
∑
𝑆𝑛𝑎𝑔

);

12 end

13 𝐿𝑁 =
∑𝑙𝑒𝑛 (𝐵)
𝑖=1 𝐿𝑁𝑖

For each batch we process, assume the batch size is 𝐵. It means
that we have 𝐵 clone pairs in this batch. We will then loop over the

batch. For each pair, we take the first one as an anchor example

(𝑥), the second one as a positive example (𝑥+). Ideally, the rest
clone pairs will all be negative examples (𝑥−). Thus, the number of
negative examples will be 2(𝐵 − 1), i.e., all programs (2𝐵) excluding
the corresponding clone pair. However, the rest of programs may

come from the same problem. In other words, these programs are

clones of the anchor example. Therefore, we should filter out those

code snippets. After constructing positive example and negative

examples, we compute their cosine similarity with anchor example.

Then, C4 exploits the derived loss function (i.e., Equation 1) to get

the loss and train the model.

In the fine tuning phase, we applied the same hyperparameter

used in the CodeBERT paper. Then, we fine tune C4 optimized by

our proposed contrastive loss.

4 EXPERIMENTAL SETUP

We evaluate the effectiveness of our approach following three re-

search questions:

• RQ1:How effective is our approach at detecting cross-language

code clones compared to the state-of-the-art baselines?

• RQ2: How effective is our approach when detecting specific

language pairs?

• RQ3: How effective is each component in our approach?

We address RQ1 by comparing our approach with CLCMiner [5]

and CLCDSA [22]. CLCMiner is a traditional text-based tool for

detecting code clones while CLCDSA is neural networks based

approach. We then address RQ2 by analyzing our results for dif-

ferent programming language pairs. Finally, we address RQ3 by

comparing results with or without fine-tuning and with or without

contrastive learning.

4.1 Baselines

To evaluate the effectiveness of our approach, we compare our

model with the following baselines:

4.1.1 CLCMiner [6]. CLCMiner is a state-of-art text-based code

clone detection tool. It uses bag-of-tokens and revision histories to

detect clones. As CLCMiner does not require training, we use it to

detect clones in the test set.

4.1.2 CLCDSA [22]. CLCDSA is a cross-language detection tool

that uses syntactical features and API documentation. It uses a deep

neural network based feature vector learning model to learn the

features and detect cross-language clones.

417

ICPC ’22, May 16–17, 2022, Virtual Event, USA Tao et al.

Table 1: Statistics for specific language code blocks

Language Average Lines Number of Blocks Tokens

C++ 66 32,281 616

C# 111 16,359 939

Java 106 18,836 734

Python 26 18,331 212

4.2 Datasets

CLCDSA [22] provides three dataset for cross-language clone detec-

tion, including Google CodeJam1 data, AtCoder2 data, and Coder-

Byte data. As CoderByte data collected by CLCDSA is not available,

we conduct experiments on the other two datasets, i.e., Google

CodeJam and AtCoder.

CodeJam is a Google’s programming competition and AtCoder

is a programming competition website in Japan. There are different

programming language solutions for one problem so that we can

take them as cross-language clone pairs. There are 86,807 code

blocks and 1,380 problems in our dataset. For one problem, there

are about 63 solutions on average. We split these problems 8:1:1 for

train, valid, test sets.

For C4 with contrastive learning, we do not need the non-clone

pairs in the training set since it can search different problems’ code

fragments in a batch as negative samples. We construct a clone pair

by randomly selecting one program and the other one program

in the same problem. In total, we get 86,695 cross-language clone

pairs, in which 69,278 pairs in the training set, 8,742 pairs in the

validation set, and 8,675 pairs in the test set.

For CLCDSA and CLCMiner, we follow the experiments setup

of CLCDSA [22], randomly select from different problems to create

non-clone pairs for one clone pair. As a result, we have 138,804

pairs in the training set, 17,332 pairs in the validation set, and 17,349

pairs in the test set where true clone pairs count for 50%.

The statistics of different language code blocks is given in Ta-

ble 1. The number of lines and tokens in C# is the highest while

the number in Python is the lowest since the amount of code in

Python is usually smaller to achieve the same functionality than

other programming languages in the dataset. The number of code

blocks in C++ is the highest, nearly as twice as the number of other

language blocks.

4.3 Metrics

In clone detection, we usually use Precision (P), Recall (R), and

F1-Score (F1) to measure the effectiveness of different approaches.

Precision stands for the accuracy of detection, is the ratio of the

number of true code clones detected to the number of all retrieved

code pairs.We define𝑅𝑅 as the number of true code clones retrieved,
𝐼𝑅 as the number of false code clones retrieved, then Precision is:

𝑃 =
𝑅𝑅

𝑅𝑅 + 𝐼𝑅
(3)

Recall is the ratio of the number of actual code clones detected

to the number of actual code clones. We define 𝑅𝑅 as the number

1http://code.google.com/codejam
2https://atcoder.jp/

Table 2: Effectiveness of our approach vs. baselines

Approach Precision Recall F1

CLCMiner 0.36 0.57 0.44

CLCDSA 0.50 0.92 0.65

C4 0.94 0.90 0.92

of true code clones retrieved, 𝑅𝑁 as the number of all true code

clones in dataset, then Recall is:

𝑅 =
𝑅𝑅

𝑅𝑅 + 𝑅𝑁
(4)

F1-Score stands for the overall performance of detection, is the

harmonic mean of precision and recall. If 𝑃 is the precision and 𝑅
is the recall, then F1 is:

𝐹1 =
2𝑃𝑅

𝑃 + 𝑅
(5)

4.4 Experimental Setting

We choose the hyperparameters for our approach as follows: we

train the model for five epochs and use the Adam optimizer with

batch size of 36. The threshold for predicting the test set is the same

as the best threshold of the validation set for all RQs while the

threshold for CLCMiner is 0.5. 𝜏 for contrastive learning is set to 12.
Lastly, we use PyTorch to implement our models. For the training

of this model, we use three RTX3090. For each epoch, it requires

about one hour.

4.5 Replication Package

Our code and dataset we used is publicly available3.

5 EXPERIMENTAL RESULTS

5.1 RQ1: C4 vs. Baselines

We compare our approach with two state-of-the-art approaches,

including CLCMiner [5] and CLCDSA [22]. We use the same ex-

perimental settings to evaluate our approach against the other

approaches in terms of precision, recall, and F1-score.

As shown in Table 2, our approach outperforms all state-of-the-

art baselines in terms of precision and F1-score. CLCDSA performs

best considering the recall. We find that CLCDSA prefers to predict

programs as clone pairs.

CLCMiner only considers a bag of tokens and neglects all other

information when detects code clones. However, cross-language

code clones are different lexically and syntactically. CLCMiner

fails to detect them through similar tokens. In addition, different

reserved tokens in different languages also increase the difficulty

for CLCMiner to detect cross-language clones.

Considering CLCDSA that is designed for cross-language detec-

tion, it performs better than CLCMiner. It analyzes the similarity

of nine syntactic source code features that have almost similar val-

ues if two source code fragments from two different programming

languages have similar functionality.

3https://github.com/Chenning-Tao/C4

418

C4: Contrastive Cross-Language Code Clone Detection ICPC ’22, May 16–17, 2022, Virtual Event, USA

Our approach outperforms both CLCMiner and CLCDSA in

terms of precision, recall, and F1-Score, which achieve 0.94, 0.90,

and 0.92 respectively.

5.2 RQ2: Specific language pairs

Table 3 shows results of approaches on different language combina-

tion. Comparing results of different programming language pairs

with CLCMiner and CLCDSA, we have the following findings:

• Finding 1. All evaluation metrics (Precision, Recall, F1-

Score) in our approach is greatly higher than measures with

CLCMiner, which achieve an increase of 0.35 in Precision,

0.56 in Recall, and 0.48 in F1-Score on average.

• Finding 2. Compared with CLCDSA, the only metric our

approach worse than CLCDSA is Recall for C# & Java pair.

The Recall scores of our approach and CLCDSA are similar,

but F1-Score of our approach is much higher than CLCDSA

since Precision of our approach is higher significantly.

• Finding 3. Variances of Precision, Recall, and F1-Score is

0.03304, 0.0367, and 0.03236 respectively for different lan-

guage combinations results in our approach, which indicate

that the deviation of results in our approach is small.

5.3 RQ3: Ablation Study

In this paper, we exploit the CodeBERT to lean the representations

of source code. Then, we use the contrastive learning technique to

fine tune the model. We want to investigate the impacts of these

variants on the performance of our approach. To illustrate the

importance of each component, we compare our approach with

two of its incomplete variants:

• CodeBERT without fine-tuning. We directly use the pre-

trained CodeBERT to detect cross-language clone pairs with-

out fine-tuning and contrastive learning.

• CodeBERT with fine-tuning. We fine tune the CodeBERT

without contrastive learning. During the fine-tuning process,

we use Mean Square Error (MSE) as the loss function that is

used in the original CodeBERT.

Table 4 shows the results of these two variants and C4. Com-

paring results of CodeBERT with and without fine-tuning, we find

that our approach benefits from fine-tuning. F1-Score is only 0.67

if we directly use the representations in CodeBERT to detect clone

pairs. We can find that it regards all pairs as clone pairs. We achieve

an increase of 0.22 in F1-Score when we fine-tune with the train

set. Similarly, we also achieve an increase in F1-Score when we

fine-tune with contrastive learning. Compared to fine-tuning Code-

BERT, contrastive learning has great advantage in improving the

Precision.

To evaluate the effectiveness of the contrastive learning, we also

give the detailed results (shown in Table 5) of CodeBERT with

MSE loss fine-tuning. Compared to results of C4 shown in Table

3, Precision and F1-Score with contrastive learning is higher than

models without contrastive learning. Our approaches achieve an

average increase of 0.10 in precision and 0.03 in F1-Score, which

indicates that our approach is effective for all different language

combinations.

In addition, we also visualize the code vectors to help understand

and explain why the vectors produced by C4 are better than the

vectors produced by others. We randomly select four problems and

get embedding of code snippets that belongs to these problems,

then we use t-SNE [33] to reduce dimensionality from 768 to 2

for visualization. As shown in Figure 3, points in the same color

represent programs from the same problems. Points with the same

color in Figure 3(a) are scattered across the graph, which means the

embedding of code is irregular without fine-tuning. Most points

with the same color in Figure 3(b) converge together but their

boundary is not very clear and some of them tangled together,

which means it can detect clone pairs but hard to distinguish several

non-clone pairs. It explains the relatively high recall (0.95) and low

precision (0.83) in RQ3. Points with same color in Figure 3(c) stay

closer than Figure 3(b) while different color points stay far apart.

Our results show that contrastive learning can keep dissimilar pairs

away while pulling similar pairs together, which increases Precision

and F1-Score greatly in detecting semantic code clones.

6 DISCUSSION

6.1 Can C4 achieve good performance on a

small dataset?

Considering the long training time for C4 and CodeBERT, we fur-

ther conduct an experiment on a smaller dataset that is more energy

efficient. We randomly select 30% pairs from the dataset and com-

pare C4 with CodeBERT. The smaller dataset includes 20,773 in the

training set, 2,619 in the validation set, and 2,572 in the test set. For

fine-tuned CodeBERT, we need to construct negative samples in its

dataset. Therefore, the fine-tuned CodeBERT has twice the amount

of data includes 41,646 in the training set, 5,200 in the validation

set, and 5,105 in the test set. Table 6 describe the results on the

small dataset setting. Compared to Table 4, we find that 𝐶4𝑆𝑀𝐴𝐿𝐿

has the same performance as C4. However, the performance of

the fine-tuned CodeBERT has an obvious decline. The small data

setting further demonstrates the effectiveness of our approach C4.

6.2 Proportion of Clone Pairs in the Test Set

Since the CLCDSA dataset only consists of clone pairs, we need

to construct negative samples by selecting samples from different

tasks.

Therefore, the amount of non-clone pairs may effect the per-

formance of different approaches. In the experimental setting, we

follow the CLCDSA and construct same number of non-clone pairs

as the positive pairs.

But in BigCloneBench [30], one of the most famous benchmarks

for code clone, we find that though in the train dataset, the number

of clone pairs is almost identical to the non-clone pairs, in the valid

and test dataset, the number of non-clone pairs versus clone pairs

is almost 1 : 6. So we want to see how well our model is when the

data distribution is different. As we need to construct much more

non-clone pairs in this discussion, we follow the small data setting

above to save training time.

We retrain the model using the same amounts of clone pairs but

different amounts of non-clone pairs. Besides the 1 : 1 (clone pair :

non-clone pair) ratio we use in Section 4.1, we use 1 : 2, 1 : 3 and
1 : 6 for training. And for each model we trained, we test them on

test dataset with 1 : 1, 1 : 2, 1 : 3, 1 : 6 ratio. The detailed F1 results
are shown in Table 7.

419

ICPC ’22, May 16–17, 2022, Virtual Event, USA Tao et al.

Table 3: Results on different language combinations

Language Combination
CLCMiner CLCDSA C4

Precision Recall F1 Precision Recall F1 Precision Recall F1

C++ & C# 0.57 0.36 0.44 - - - 0.91 0.88 0.89

C++ & Java 0.58 0.37 0.45 - - - 0.93 0.90 0.91

C++ & Python 0.59 0.36 0.45 - - - 0.94 0.92 0.93

C# & Java 0.59 0.34 0.43 0.67 (0.47∗) 0.96 (0.91∗) 0.79 (0.62∗) 0.95 0.93 0.94

C# & Python 0.56 0.36 0.44 0.63 (0.54∗) 0.89 (0.95∗) 0.73 (0.69∗) 0.92 0.95 0.94

Java & Python 0.59 0.36 0.45 0.58 (0.46∗) 0.90 (0.85∗) 0.705 (0.60∗) 0.95 0.93 0.94
* We replicated the CLCDSA according to the replication package they provided in the GitHub. We re-train their models and show the results from our training
(in the brackets). Results outside the brackets are taken from CLCDSA paper.

(a) w/o fine-tune (b) w/ fine-tune (c) C4: w/ fine-tune and contrastive learning

Figure 3: Visualization of the vector representations of the code snippets

Table 4: Effectiveness of each incomplete variant of our ap-

proach

Approach Precision Recall F1

without fine-tuning 0.50 1.00 0.67

with fine-tuning 0.83 0.95 0.89

C4 0.94 0.90 0.92

Table 5: Results on different language combinations of C4

without contrastive learning

Language Combination Precision Recall F1

C++ & C# 0.83 0.95 0.89

C++ & Java 0.84 0.94 0.88

C++ & Python 0.82 0.96 0.88

C# & Java 0.83 0.97 0.90

C# & Python 0.84 0.98 0.90

Java & Python 0.84 0.98 0.90

Table 6: Effectiveness of C4 and fine-tuned CodeBERT on a

small dataset setting

Approach Precision Recall F1

fine-tuned CodeBERT 0.82 0.92 0.87

𝐶4𝑆𝑀𝐴𝐿𝐿 0.94 0.90 0.92

1:1 1:2 1:3 1:6

0.6

0.7

0.8

0.9

1

1:1

1:2

1:3

1:6

CL

Figure 4: F1 results when using different proportions of clone

pairs to train and test.

From Table 7 we can see, when only using CodeBERT with fine-

tuning, simply adding more non-clone pairs will not help the model

to perform better. The F1 result when using 1 : 2, 1 : 3, 1 : 6 for
training is almost the same while the number of negative samples

almost tripled. This indicates the traditional method cannot make

full use of a large number of non-clone pairs while the methods

with contrastive learning can benefit a lot from a large number of

non-clone pairs.

420

C4: Contrastive Cross-Language Code Clone Detection ICPC ’22, May 16–17, 2022, Virtual Event, USA

Table 7: F1 results of different train and test dataset

Train

Test
1:1 1:2 1:3 1:6

1:1 0.87 0.78 0.74 0.61

1:2 0.87 0.80 0.78 0.69

1:3 0.87 0.83 0.78 0.71

1:6 0.87 0.82 0.79 0.67

CL 0.92 0.90 0.89 0.86

Table 8: CodeBERT baseline when training with same num-

ber of clone pairs and non-clone pairs

Test Precision Recall

1:1 0.82 0.92

1:2 0.70 0.91

1:3 0.64 0.91

1:6 0.45 0.92

Figure 4 depicted the result in the diagram. X-axis represents the

test dataset ratio, each line represent different training method. We

can see when using CodeBERT with fine tuning, when the ratio

changed from 1 : 1 to 1 : 2, the F1 score dropped significantly from

0.04 up to 0.09. And when the ratio changed to 1 : 6, the result for

our baseline method dropped up to 0.26 compared to 1 : 1 while

CodeBERT fine tuning with contrastive learning only dropped 0.06.

From Table 8 we can see as the number of non-clone pairs in the

dataset increases, recall barely changes while precision deteriorates

rapidly. It seems to be the result of the model’s tendency to deem

non-clone pairs as clone pairs. When the ratio is 1 : 6, the precision

drops to 0.45, which is almost like the model is just guessing. We

can safely assume that the method with contrastive learning has

learnt a better code representation thus can handle different data

distribution better.

6.3 Investigating why C4 fail

We are also curious about why our approach fail to detect clones.

We find that C4 may mistake non-clone pairs as clones. Figure 5

shows an example of a non-clone pair that is mistaken as a clone

pair. We can find that the two code fragments have same variable

name time and similar variable name time_to_goal, bestTime. C4

is confused when most variable names are similar. In addition, we

can observe that their interprocedural control flow is similar. In the

main function, they both call another method in a loop and print

the answer. In the function they call, there are the same while loop

and some assignment statements in them. However, statements in

the basic block are totally different and two code fragments achieve

different functionality. Our approach fails to predict them as a non-

clone pairs. In the future, we plan to combine the control flow and

data flow to achieve more precise detection.

6.4 Threats to Validity

We have identified the following threats to validity among our

study:

6.4.1 Internal Validity. In this paper, we exploit the pre-trained

model CodeBERT to convert programs written in different lan-

guages into the high-dimensional code vector space and fine-tune

the model. Pre-trained knowledge from CodeBERT may introduce

bias of the effectiveness of our approach. First, CodeBERT is pre-

trained on Go, Python, Java, JavaScript, Php, and Ruby. In this paper,

we detect clones in Java, Python, C++, and C# in which C++ and C#

programs are not learned by the CodeBERT. The representations

for these programs may not effective. Second, CodeBERT can only

handle 512 tokens while the lengths of most code fragments are

over 512 tokens, which influence C4’s effectiveness.

6.4.2 Dataset Validity. The dataset used in our experiments takes

solutions written in different programming languages for the same

task as clone pairs. CoderByte dataset collected by CLCDSA is not

available so that we use other two datasets (i.e. AtCoder dataset,

Google CodeJam dataset) to train and test, which lead to the differ-

ent results between paper and our experiments for CLCDSA.

7 RELATEDWORK

7.1 Traditional Approaches

7.1.1 Single language. Most of the clone detection approaches

using traditional methods are targeted at Type-I, Type-II, and weak

Type-III clones detection. Existing studies mainly include token-

based techniques and syntactic-based techniques.

CCFinder [14] is a tool that transforms the input source text into

a regular form and uses a token-by-token matching algorithm to

compute clone metrics. But it requires a language-dependent lexical

analyzer and transformation rules. Therefore, it only supports a

limited amount of programming languages.

SourcerCC [27] is a token-based clone detector that tokenizes

the code blocks and creates a partial inverted index for detecting

clone pairs. Its ability is limited as it can only capture lexical level

information.

Deckard [13] is an AST-based tool that characterizes subtrees

with numerical vectors in the Euclidean space and clusters these

vectors using the Euclidean distance metric. Subtrees with vectors

in one cluster are considered similar. Similar to CCFinder, it requires

pre-defined rules for each language.

In addition, a large amount of works also focus on clone detec-

tion. They can be divided into five categories [37]: textual, token,

syntactic, semantic, and learning. Textual based approaches com-

pare code in the form of text and are only found to be cloned if the

two code fragments are literally identical in terms of textual content.

Token based apporaches like CCFinder and SourcerCC split code

into tokens and matched them. Syntactic approaches use tree-based

techniques (i.e. AST) or metric-based techniques to compare code

similarity. Semantic approaches detect code fragments that have

different structure but perform same function. This can be done

using static analysis such as PDG [16]. But they are often faced

by the problem of being very difficult to scale. We find that most

traditional tools that detect clone pairs such as CCFinder [14] and

SourcererCC [27] can be applied to different languages but each

pair must be the same programming language.

7.1.2 Cross Language. A very few models can be applied to cross-

language clone detection. Themost representative ones are LICCA [35]

421

ICPC ’22, May 16–17, 2022, Virtual Event, USA Tao et al.

memo = dict()
def canBuy(C,F,n):

if (C,F,n) in memo:
return memo[(C,F,n)]

if n==1:
return C / 2.0

memo[(C,F,n)] = canBuy(C,F,n-1) + C/ (2.0 + F* (n-1))
return canBuy(C,F,n)

def best(C,F,X):
factories =0
bestTime = X/2.0

while True:
factories+=1
time = canBuy(C,F,factories)
time += X / (factories* F + 2.)
if time < bestTime:

bestTime = time
else:

return bestTime

f = open('input.in', 'r')
data = f.read().split()

instances = int(data[0])
for x in xrange(instances):

line = map(float, data[x+1].split(" "))
C, F, X = line[0], line[1], line[2]
print "Case #%d: %.7f" % (x+1, best(C,F,X))

double cookies(void) {
double cost, f, goal;
double time = 0;
scanf("%lf%lf%lf", &cost, &f, &goal);
double cookie_rate = 2.0;
double time_to_farm, time_to_goal, time_after_farm;
while(true) {

time_to_goal = goal/cookie_rate;
time_to_farm = cost/cookie_rate;
if(time_to_goal < time_to_farm) {

time += time_to_goal;
break;

}
time_after_farm = goal/(cookie_rate+f);
if(time_after_farm + time_to_farm < time_to_goal) {

cookie_rate += f;
time += time_to_farm;

} else {
time += time_to_goal;
break;

}
}
return time;

}
int main(void) {

int cases;
scanf("%d", &cases);
for (int i = 1; i <= cases; i++) {

double answer = cookies();
printf("Case #%d: ", i);
printf("%lf\n", answer);

}
}

Figure 5: An example of a non-clone pair that is mistaken as a clone pair by C4

and CLCMiner [5]. LICCA relies on SSQSA’s high-level represen-

tation of code but is only able to be applied to 5 languages. Also,

it requires the same source code length and code steps and flow

of functionality of two code blocks. CLCMiner mines clones from

revision histories thus limiting its application. Those approaches

have many limitations thus are unsuitable in real world scenarios.

7.2 Deep learning Approaches

With the emergence of difficult datasets such as BigCloneBench [31]

which contains Type-IV clone pairs and the advances of deep learn-

ing, the number of approaches using deep learning to detect code

clone pairs has increased a lot.

7.2.1 Single language. Most approaches use static analysis meth-

ods and can be categorized into token-based, syntax-based, and

semantic-based.

The token-based methods like CCLearner [17] use deep learning

methods to acquire token-level information. CCLearner extracts

tokens from known method-level code clones and non-clones to

form a feature vector. They use this feature vector to train a classifier

and then use the classifier to detect clones in a given codebase.

They also extracted some syntax tree information and use them in

training. But this method ignores the structure information of the

program and is very sensitive to changes like code orders.

The syntax-basedmethods usually use AST to obtain information

regarding its code structure and grammar. CDLH [41] treats this

problem as a supervised-learning problem of the source code’s

hash features. The CDLH approach uses certain encoding rules to

encode the abstract syntax tree representation of the source code.

Then it uses an LSTM network to combine these representations

into a binary vector. But it only utilizes the structure information

and ignores other information like the node type. ASTNN [45]

utilized node type in AST and split the entire AST into a sequence

of small statement trees. Then use a statement encoder to capture

the lexical and syntactical knowledge of the tree and turn it into a

vector. A bidirectional RNN model is used to generate the vector

representation of the code.

The semantic-based methods usually involve more complex

static analyses such as CFG, DFG and PDG. But some analysis

like PDG requires the code to be compatible and is unable to detect

clones in incomplete code fragments. Wang et al. [39] build a graph

representation of programs called flow-augmented abstract syntax

tree (FA-AST) by adding control and data flow edges. Mehrotra

et al. [21] utilize the program dependency graph to encode code

fragment and use a graph-based Siamese network to detect clone

pairs.

7.2.2 Cross language. Very few researchers have focused on cross-

language clone detection due to its complexity and lack of cross-

language clone detection datasets. Themost famouswork is CLCDSA [22]

which provides a dataset for cross-language clones and imple-

mented a deepNN network that can detect cross-language clones.

8 CONCLUSION

There are numerous approaches to detect code clones in the same

language, but few approaches are able to detect cross-languag code

422

C4: Contrastive Cross-Language Code Clone Detection ICPC ’22, May 16–17, 2022, Virtual Event, USA

clones effectively. In our paper, we propose a new approach, C4, to

detect cross-language code clones. C4 takes the pre-trained model

CodeBERT to convert programs in different languages into repre-

sentations and finetune the model using contrasitive objective so

that it can effectively recognize clone pairs and non-clone pairs.

Experimental results show that our approach outperforms the state-

of-the-art approaches significantly in terms of precision, recall, and

F1-score. In addition,C4 also performs well in small dataset settings

and outperforms other approaches.

9 ACKNOWLEDGMENTS

This research was supported by the National Science Foundation

of China (No. 62141222 and No. U20A20173)

REFERENCES
[1] B.S. Baker. 1995. On finding duplication and near-duplication in large software

systems. In Proceedings of 2nd Working Conference on Reverse Engineering. 86–95.
https://doi.org/10.1109/WCRE.1995.514697

[2] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
software engineering 33, 9 (2007), 577–591.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations.
arXiv:2002.05709 [cs.LG]

[4] Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun
Zhao. 2016. Mining revision histories to detect cross-language clones without
intermediates. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering. 696–701.

[5] Xiao CHENG, Zhiming PENG, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun
Zhao. 2017. CLCMiner: Detecting Cross-Language Clones without Intermediates.
IEICE Transactions on Information and Systems E100.D (02 2017), 273–284. https:
//doi.org/10.1587/transinf.2016EDP7334

[6] Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun
Zhao. 2017. CLCMiner: detecting cross-language clones without intermediates.
IEICE TRANSACTIONS on Information and Systems 100, 2 (2017), 273–284.

[7] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
arXiv:2003.10555 [cs.CL]

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
arXiv:2002.08155 [cs.CL]

[10] Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. 2019. Analyz-
ing and Improving Representations with the Soft Nearest Neighbor Loss.
arXiv:1902.01889 [stat.ML]

[11] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. 2021.
Automating the removal of obsolete TODO comments. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 218–229.

[12] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. IEEE, 1735–1742.

[13] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones. In
29th International Conference on Software Engineering (ICSE’07). 96–105. https:
//doi.org/10.1109/ICSE.2007.30

[14] T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions
on Software Engineering 28, 7 (2002), 654–670. https://doi.org/10.1109/TSE.2002.
1019480

[15] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2021. Supervised Contrastive
Learning. arXiv:2004.11362 [cs.LG]

[16] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify du-
plication in source code. In International static analysis symposium. Springer,
40–56.

[17] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara G. Ryder. 2017.
CCLearner: A Deep Learning-Based Clone Detection Approach. 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME) (2017),

249–260.
[18] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task learning based pre-

trained language model for code completion. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 473–485.

[19] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvinine-
jad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual Denoising Pre-training
for Neural Machine Translation. CoRR abs/2001.08210 (2020). arXiv:2001.08210
https://arxiv.org/abs/2001.08210

[20] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).
arXiv:1907.11692 http://arxiv.org/abs/1907.11692

[21] Nikita Mehrotra, Navdha Agarwal, Piyush Gupta, Saket Anand, David Lo, and
Rahul Purandare. 2020. Modeling Functional Similarity in Source Code with
Graph-Based Siamese Networks. arXiv:2011.11228 [cs.SE]

[22] KawserWazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K Roy, and Kevin A
Schneider. 2019. Clcdsa: cross language code clone detection using syntactical
features and api documentation. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 1026–1037.

[23] Yujia Qin, Yankai Lin, Ryuichi Takanobu, Zhiyuan Liu, Peng Li, Heng Ji, Minlie
Huang, Maosong Sun, and Jie Zhou. 2020. ERICA: Improving Entity and Relation
Understanding for Pre-trained Language Models via Contrastive Learning. CoRR
abs/2012.15022 (2020). arXiv:2012.15022 https://arxiv.org/abs/2012.15022

[24] XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao, Ning Dai, and XuanJing
Huang. 2020. Pre-trained models for natural language processing: A survey.
Science China Technological Sciences 63, 10 (Sep 2020), 1872–1897. https://doi.
org/10.1007/s11431-020-1647-3

[25] Gordana Rakić. 2015. Extendable and adaptable framework for input language
independent static analysis. Ph. D. Dissertation. University of Novi Sad (Serbia).

[26] Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. 2014. The vision of
software clone management: Past, present, and future (keynote paper). In 2014
Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). IEEE, 18–33.

[27] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC. Proceedings of the 38th International Conference on
Software Engineering (May 2016). https://doi.org/10.1145/2884781.2884877

[28] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
unified embedding for face recognition and clustering. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Jun 2015). https://doi.org/10.
1109/cvpr.2015.7298682

[29] Kihyuk Sohn. 2016. Improved Deep Metric Learning with Multi-class
N-pair Loss Objective. In Advances in Neural Information Processing Sys-
tems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.),
Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2016/file/
6b180037abbebea991d8b1232f8a8ca9-Paper.pdf

[30] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Moham-
mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 476–480.

[31] Jeffrey Svajlenko and Chanchal K. Roy. 2015. Evaluating clone detection tools with
BigCloneBench. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 131–140. https://doi.org/10.1109/ICSM.2015.7332459

[32] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019. Representation Learning
with Contrastive Predictive Coding. arXiv:1807.03748 [cs.LG]

[33] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[35] Tijana Vislavski, Gordana Rakić, Nicolás Cardozo, and Zoran Budimac. 2018.
LICCA: A tool for cross-language clone detection. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 512–516.
https://doi.org/10.1109/SANER.2018.8330250

[36] ChristianWagner. 2014. Model-Driven Software Migration: A Methodology: Reengi-
neering, Recovery and Modernization of Legacy Systems. Springer Science &
Business Media.

[37] Andrew Walker, Tom Černý, and Eunjee Song. 2020. Open-source tools and
benchmarks for code-clone detection: past, present, and future trends. ACM
SIGAPP Applied Computing Review 19 (01 2020), 28–39. https://doi.org/10.1145/
3381307.3381310

[38] Shuohuan Wang, Yu Sun, Yang Xiang, Zhihua Wu, Siyu Ding, Weibao Gong,
Shikun Feng, Junyuan Shang, Yanbin Zhao, Chao Pang, Jiaxiang Liu, Xuyi Chen,
Yuxiang Lu, Weixin Liu, Xi Wang, Yangfan Bai, Qiuliang Chen, Li Zhao, Shiyong
Li, Peng Sun, Dianhai Yu, Yanjun Ma, Hao Tian, Hua Wu, Tian Wu, Wei Zeng, Ge
Li, Wen Gao, and Haifeng Wang. 2021. ERNIE 3.0 Titan: Exploring Larger-scale
Knowledge Enhanced Pre-training for Language Understanding and Generation.
CoRR abs/2112.12731 (2021). arXiv:2112.12731 https://arxiv.org/abs/2112.12731

423

ICPC ’22, May 16–17, 2022, Virtual Event, USA Tao et al.

[39] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code
Clones with Graph Neural Networkand Flow-Augmented Abstract Syntax Tree.
arXiv:2002.08653 [cs.SE]

[40] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones
with Graph Neural Networkand Flow-Augmented Abstract Syntax Tree. CoRR
abs/2002.08653 (2020). arXiv:2002.08653 https://arxiv.org/abs/2002.08653

[41] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In IJCAI.

[42] Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong Han, Zhongyuan Wang, and
Songlin Hu. 2021. ESimCSE: Enhanced Sample Building Method for Contrastive
Learning of Unsupervised Sentence Embedding. CoRR abs/2109.04380 (2021).

arXiv:2109.04380 https://arxiv.org/abs/2109.04380
[43] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. 2018. Unsuper-

vised Feature Learning via Non-Parametric Instance-level Discrimination.
arXiv:1805.01978 [cs.CV]

[44] Dejiao Zhang, Feng Nan, Xiaokai Wei, Shang-Wen Li, Henghui Zhu, Kathleen R.
McKeown, Ramesh Nallapati, Andrew O. Arnold, and Bing Xiang. 2021. Sup-
porting Clustering with Contrastive Learning. CoRR abs/2103.12953 (2021).
arXiv:2103.12953 https://arxiv.org/abs/2103.12953

[45] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A Novel Neural Source Code Representation Based on Abstract Syntax
Tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 783–794. https://doi.org/10.1109/ICSE.2019.00086

424

