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Abstract—Quantum readout error is the most significant
source of error, substantially reducing the measurement fidelity.
Tensor-product-based readout error mitigation has been pro-
posed to address this issue by approximating the mitigation
matrix. However, this method inevitably encounters the dynamic
generation of the mitigation matrix, leading to long latency.
In this paper, we propose DyREM, a software-hardware co-
design approach that mitigates readout errors with an embedded
accelerator. The main innovation lies in leveraging the inherent
sparsity in the nonzero probability distribution of quantum states
and calculating the tensor product on an embedded accelerator.
Specifically, using the output sparsity, our dataflow dynamically
downsamples the original mitigation matrix, which dramatically
reduces the memory requirement. Then, we design DyREM
architecture that can flexibly gate the redundant computation of
nonzero quantum states. Experiments demonstrate that DyREM
achieves an average speedup of 9.6× ∼ 2000× and fidelity
improvements of 1.03× ∼ 1.15× compared to state-of-the-art
readout error mitigation methods.

I. INTRODUCTION

In the current Noisy Intermediate-Scale Quantum (NISQ)
era, various sources of errors hinder the full realization of
quantum computing advantage [1], [2]. Among these, readout
error is a significant source of noise, with error rates ranging
from 1% to 10% on state-of-the-art superconducting quantum
processors [2]–[4]. Consequently, mitigating readout error
is essential to ensure high fidelity in both NISQ quantum
processors and future fault-tolerant quantum systems.

Several mitigation approaches have been proposed, includ-
ing matrix-based mitigation [5]–[7], machine learning [8],
and measurement subsetting [9]. Among these, matrix-based
mitigation is widely used, employing matrix-vector multipli-
cation (MVM) to improve measurement fidelity. However, this
approach is computationally intensive as the mitigation matrix
size grows exponentially with the number of qubits [10]. To
address the memory issue, the tensor-product-based approach
provides a more general formulation by decomposing the
mitigation matrix into a tensor product of sub-mitigation
matrices. Each sub-mitigation matrix is independently charac-
terized based on the specific subset of qubits. This formulation
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Fig. 1. (a) Breakdown of end-to-end latency for the 16-qubit QAOA on the
156-qubit ibm fez quantum processor. (b) The tradeoff between scalability
and latency for MVM-based method SpREM [10] and tensor-product-based
(TP) methods Mthree [5], IBU [6], and QuFEM [7].

avoids constructing and storing the full-dimensional mitigation
matrix, making it inherently scalable.

However, current tensor-product-based approaches still face
limitations, including low accuracy, insufficient flexibility, and
high latency. For example, Mthree [5] and IBU [6] calculate
the mitigation matrix using 2 × 2 qubit-independent sub-
mitigation matrices. However, these 2×2 sub-mitigation matri-
ces fail to consider qubit crosstalk, severely reducing fidelity.
To improve fidelity, QuFEM [7] groups physical qubits and
utilizes grouping matrices to approximate mitigation matrix.
However, QuFEM lacks the adaptability to varying measured
qubits, as its grouping matrices are static and require pre-
determination. Furthermore, the inherently time-intensive na-
ture of tensor product operations results in significant latency
across these approaches. For example, as shown in Figure
1(a), the mitigation time of QuFEM accounts for 88% of the
end-to-end latency for a 16-qubit QAOA circuit. Overall, as
shown in Figure 1(b), current methods face a tradeoff between
scalability and mitigation latency.

In this paper, we propose DyREM, a software-hardware co-
design approach that dynamically mitigates readout errors with
an embedded accelerator. The key innovation of DyREM lies
in exploiting the inherent sparsity in the nonzero probabil-
ity distribution of quantum states and calculating the tensor
product on an embedded accelerator. To adapt to varying
measured qubits, our dataflow dynamically downsamples the
original mitigation matrix to obtain the required mitigation
matrix. Then, we introduce nonzero state-oriented computation
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to compress and calculate the mitigation matrix efficiently. Fi-
nally, we design DyREM architecture to support our dataflow,
which can flexibly gate the redundant computation of nonzero
quantum states.

The contribution of this paper can be summarized as fol-
lows:

• We propose DyREM, a software-hardware co-design ap-
proach that dynamically mitigates readout error with an
embedded accelerator, leveraging the inherent sparsity in
the nonzero probability distribution of quantum states.

• We introduce a dataflow that dynamically downsamples
the original mitigation matrix, dramatically reducing the
memory requirement. We further design DyREM archi-
tecture that flexibly gates the redundant computation of
nonzero quantum states.

• We evaluate the effectiveness of DyREM by comparing
it with state-of-the-art readout error mitigation meth-
ods. The results demonstrate the superiority of DyREM,
achieving an average of 9.6× ∼ 2000× speedup and
1.03× ∼ 1.15× fidelity improvement.

II. BACKGROUND

A. Matrix-Based Readout Error Mitigation

After the measurement operation, the readout error maps
the ideal probability distribution Pideal into a noise probability
distribution Pnoisy . This process can be mathematically repre-
sented as a linear transformation, where Pideal is multiplied by
a noise matrix. To mitigate readout error, we need to multiply
Pnoisy by a mitigation matrix M :

Pmiti = M · Pnoisy (1)

where the size of M is 2n × 2n (n refers to the number of
qubits). After the mitigation, the probabilities of the ideal
states are expected to increase, while those of the noisy
probabilities are reduced. However, the size of M scales expo-
nentially with n, exhibiting poor scalability. For example, a 30-
qubit mitigation matrix requires 32,768 PB of memory, which
is 46.8× the capacity of the world’s fastest supercomputer
Frontier (700 PB) [11].

B. Tensor-Product-Based Readout Error Mitigation

To address the memory issue, tensor-product-based readout
error mitigation has been proposed. The key idea is to approx-
imate the full-dimensional mitigation matrix M using a series
of tensor-product operations [5]–[7]:

Pmiti = (M1 ⊗M2 ⊗ · · · ⊗Mk) · Pnoisy (2)

where M1,M2, · · · ,Mk are sub-mitigation matrices obtained
by partitioning the measured qubits into k groups. As illus-
trated in Figure 2(a), IBU [6] regards each physical qubit as an
independent unit and approximates M using a tensor product
of seven 2× 2 mitigation matrices (i.e., M0 ∼ M6). However,
IBU achieves only limited mitigation accuracy because it
neglects the measurement crosstalk between qubits.
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(a) Example of tensor-product-based readout mitigation process.
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(b) Generalized mitigation matrix generation according to the measured qubits.

staticstatic

dynamic

qubit partition original groups original matrices

(1)

(2)

measured qubits downsampled groups downsampled matrices

... ...

...
...

= ... ...

...
...

10 10 62

62

54

54

2

3

4 5

210

0

1 2

4

3

6

3

4 5 6

10 2

3

4 5 6

10 2

3

4 5 6

... = ... ...

...
...

... = ... ...

...
...

20 1

3

4 5 6

Fig. 2. (a) Tensor-product-based readout mitigation process. (b) Generalized
mitigation matrix generation by dynamically computing the downsampled
groups.

To consider crosstalk effects, QuFEM [7] proposes a more
general formulation by grouping physical qubits to approxi-
mate M accurately. As shown in Figure 2(a), seven qubits on
the device are partitioned into four groups (i.e., G0 ∼ G3)
by quantifying the interactions between qubits. Each group is
then characterized to produce its own mitigation matrix (i.e.,
M0 ∼ M3). However, the groups and their mitigation matrices
are static as they must be pre-determined before the mitigation
process begins.

C. Motivation

In practical quantum circuit execution, the set of measured
qubits varies due to differing levels of transpiler optimization,
as shown in Figure 2(b). Consequently, the groups of measured
qubits are dynamic, rendering the pre-determined mitigation
matrices unsuitable for reuse during mitigation.

This limitation motivates us to develop a new approach
to enable dynamic readout error mitigation. To this end, we
introduce the concept of downsampled group, denoted by gi.
We dynamically determine the downsampled group gi based
on the measured qubits and original groups Gj . Then, we
calculate the downsampled matrices mi for gi by deriving
them from the original matrices Mj . Finally, we calculate the
mitigation matrix based on the downsampled matrices mi and
perform the MVM step to complete mitigation.

III. DYREM DATAFLOW

A. Mitigation Dataflow Overview

Figure 3 illustrates an example of DyREM mitigation
dataflow. The input consists of measured qubits and noisy
distribution. The output is mitigated distribution Pmiti. The
dataflow is divided into three steps. Step 1. downsam-
pled groups generation: we partition the measured qubits
’ 1⃝ 2⃝ 4⃝ 5⃝’ according to the original groups G0 ∼ G3.
Then, we obtain four downsampled groups g0 ∼ g3, which
serve as the input for matrix downsampling. Step 2. ma-
trix downsampling: we categorize the downsampled groups
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Fig. 3. Example of DyREM mitigation dataflow.

g0 ∼ g3 into three types. Then, we adopt three strategies
to generate the downsampled matrices m0 ∼ m3, serving
as the input for nonzero state-oriented computation. Step 3.
nonzero state-oriented computation: we first obtain the output
sparsity from the noisy distribution. Then, we compress the
full-dimensional matrix based on the output sparsity. Next,
we calculate the mitigation matrix by selecting the required
elements from the downsampled matrices m0 ∼ m3 and
performing multiplication. Finally, we perform matrix-vector-
multiplication to mitigate the readout error.

In the following sections, we explain the details of step 2
and step 3, respectively.

B. Matrix Downsampling

As depicted in Figure 3(a), some physical qubits are not
measured (denoted by ⊘) in circuit execution. Therefore, the
downsampled groups g0 ∼ g3 are not identical to the original
groups G0 ∼ G3. To consider this variation, we categorize the
downsampled groups into three types: (1) unmeasured (e.g.,
g2), (2) fully measured (e.g., g3), and (3) partially measured
(e.g., g0 and g1). As shown in Figure3(b), we employ tailored
strategies to generate downsampled matrices for each type of
group. For ’unmeasured’ g2, we set its downsampled matrix to
scalar ’1’, which does not influence the computational result.
For ’fully measured’ g3, we directly copy the original matrix
M3 to obtain the downsampled matrix m3 without additional
computation. For ’partially measured’ g0 and g1, we apply a
convolution kernel to downsample the original matrix.

Figure 4 presents the downsampling of the original matrix
M0. Figure 4(a) illustrates the process of deriving the marginal
probability distribution (MPD) of variable X from the joint
probability distribution (JPD) of two variables X,Y . By taking
cross sections of the JPD along the x-axis and performing
integration, the probability distribution of variable X is ob-

Fig. 4. Inspiration and an example of the matrix downsampling for partially
measured groups.

tained. This process inspires us to use convolution kernels
to downsample the original matrix, as the original matrix
M0 essentially represents the JPD of discrete variables (e.g.,
qubits). Figure 4(b) presents the detailed process. To obtain
the convolution kernel, we first generate the valid coordinates
based on g0, where the value at measured qubit 1⃝ is fixed
at 0, and the value at ⊘ is filled sequentially from ’00’ to
’11’. The values at the valid coordinates are set to 1, while all
other positions are set to 0. Then, we extract the maximal sub-
coordinate ’10’, convert it to decimal, and add one to obtain
the kernel size. Next, we determine the stride based on g0 by
setting ⊘ to 0 and measured qubit 1⃝ to 1. We then convert
’01’ to decimal to obtain the stride (e.g., 1). Finally, we scan
M0 using the kernel and normalize each row to obtain the
downsampled matrix m0.

C. Nonzero State-Oriented Computation

To enable on-chip calculation of the mitigation matrix,
we propose nonzero state-oriented computation, comprising
two steps: mitigation matrix compression and nonzero state
similarity detection.

Mitigation matrix compression. A straightforward ap-
proach to obtain the mitigation matrix is to compute the tensor
product of the downsampled matrices m0 to m3. However,
this approach is time-consuming and resource-intensive. We
observe that the ideal distribution usually lies in the noisy dis-
tribution, which only contains a few nonzero values. Therefore,
we exploit this output sparsity from the noisy distribution to
compress the mitigation matrix. By confining the mitigation
process to the noisy space, we reduce the mitigation matrix
size from exponential to linear. For example, in Figure3(c),
the mitigation matrix size is reduced from 16 × 16 to 6 × 6
based on the output sparsity.

Nonzero state similarity detection. After compression,
we cannot simply perform a tensor product of downsampled
matrices to calculate the mitigation matrix. Figure 5 shows
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a straightforward approach to compute the mitigation ma-
trix elements individually: for each element, its coordinates
are divided into sub-coordinates based on the downsampled
groups g0 ∼ g3; the corresponding elements are then extracted
from the downsampled matrices m0 ∼ m3 and multiplied
cumulatively to obtain the matrix element. However, we find
that this approach involves many redundant operations. For
example, the first two sub-coordinates of (s0, s0) and (s0, s1)
are identical, which means the extraction and multiplication
for (s0, s1) are redundant.

To eliminate redundant operations, we introduce nonzero
state similarity detection. Specifically, we use a window to
partition the noisy states sequentially. Note that we assume
the noisy states are ordered according to their binary values.
Then, we partition the qubits of noisy states according to
the downsampled groups g0 ∼ g3. Within each window, we
identify the longest identical segment and obtain its length
to construct a similar table. We can generate this table once
we receive the noisy distribution. Then, we utilize this table
to guide the calculation of the mitigation matrix, thereby
eliminating redundant operations. Accordingly, we compute
each row of the mitigation matrix window-wise rather than
element-wise.

Figure 5 shows the process of computing a similar table for
a mitigation matrix. First, we set the window size to 4. Then,
the noisy states are partitioned into two windows (i.e., w0

and w1). In each window, the noisy states are partitioned into
three columns according to the downsampled groups g0 ∼ g3.
Clearly, in w0, the largest identical segment is (w0

0, w
1
0), while

in w1, it is (w0
1, w

1
1). Next, we record the length of these two

segments in a similar table (i.e., 2 and 2). After applying the
nonzero state similarity detection, we reduce the extraction and
multiplication operations required for 6× 6 mitigation matrix
calculation by 44% and 33%, respectively.

IV. ARCHITECTURE DESIGN

We design an accelerator architecture to implement
DyREM, primarily consisting of two components: nonzero
state detector and mitigation core array. The nonzero state

(b) The mitigation module with dedicated mitigation core.

(a) Nonzero state detector with early termination unit.
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Fig. 6. The hardware design details of DyREM.

detector efficiently calculates the length of the longest identical
segment for each window. The mitigation core array receives
the values from downsampled matrices and noisy probabilities.
Each mitigation core (MC) employs a three-layer multiplier to
integrate the mitigation matrix calculation with the MVM step.

A. Nonzero State Detector

As shown in Figure 6(a), the nonzero state detector in-
tegrates an early termination unit with an adder. The early
termination unit consists of a comparator and a NOT gate.
The comparator receives the columns of each window and
determines whether the bits in each column are identical. The
comparator consists of a series of logic gates (AND, NOT,
and XOR gates), forming a hierarchical tree. If the comparator
outputs ’0’, it indicates that all bits in the column are identical;
otherwise, they are not. Specifically, the output then passes
through a NOT gate to generate an enable signal, indicating
whether the subsequent comparison should proceed. In other
words, if the bits in the previous column are not identical,
there is no need to perform further comparisons. After each
comparison, the adder receives the output from the NOT gate,
accumulating them to obtain the identical table.

Figure 6(a) shows an example of the nonzero state detector
operating on window w1. The comparator first receives the
bits in w0

0 and determines they are identical, enabling the
comparison of w1

0 . Meanwhile, the length increases by one.
Similarly, the comparison result of w1

0 enables the comparison
of w2

0 , while incrementing the length to 2. Since each element
in w2

0 contains two bits, we divide w2
0 into two parts and

sequentially input them into the comparator. As shown in
Figure 6(a), the first part is not identical. Thus, the output of
the comparator is 1, disabling the comparison of the second
part. Consequently, the length is incremented by 0. Finally,
the length is 2, indicating w1 has two identical columns.
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TABLE I
THE HARDWARE PERFORMANCE COMPARISON.

Baseline Technical feature
VQE [12] QAOA [13] DJ [14]

Latency
(s)

Q-throughput
(states/s)

Latency
(s)

Q-throughput
(states/s)

Latency
(s)

Q-throughput
(states/s)

Mthree [5] Hamming pruning 2.52 (384×) 7.27× 103 (583×) 4.22 (461×) 4.63× 103 (758×) 0.66 (206×) 2.77× 104 (192×)
SpREM [10] HDSR format 0.48 (73.8×) 1.76× 106 (2.4×) 0.56 (61.5×) 1.49× 106 (2.3×) 0.031 (9.6×) 3.43× 106 (1.5×)
IBU [6] Bayesian unfolding 13.0 (2000×) 3.58× 105 (11.8×) 17.1 (1879×) 2.72× 105 (12.9×) 4.59 (1437×) 1.01× 106 (5.2×)
QuFEM [7] Finite element analysis 11.7 (1800×) 1.56× 103 (2726×) 13.5 (1483×) 1.45× 103 (2420×) 5.42 (1687×) 2.65× 103 (2002×)
DyREM Redundancy detection 6.52× 10−3 4.24× 106 9.12× 10−3 3.51× 106 3.25× 10−3 5.31× 106

B. Mitigation Core

As depicted in Figure 6(b), the mitigation module comprises
a data fetcher, a mitigation core array, an accumulator, and an
output buffer. The data fetcher receives the similar table and
the noisy distribution. Then, it extracts the values from the
downsampled matrices and passes them to the mitigation core
array. We allocate 4KB of on-chip SRAM for the downsam-
pled matrices to support quick random accesses, with each
element stored in FP16 format.

Each MC is responsible for a single window, including
calculating the mitigation matrix elements and performing the
mitigation. Within the MC, we set up a FIFO for each mul-
tiplier (1st layer) to stockpile the values from downsampled
matrices. In particular, the FIFO in the first row is used to
calculate the reused data. Each remaining FIFO corresponds to
the calculation of a mitigation matrix element. After obtaining
the reused data, we broadcast it to the multipliers in the
2nd layer. Then, we perform multiplication to calculate the
mitigation matrix elements within the window. Finally, we
execute mitigation by multiplicating noisy probabilities and
the mitigation matrix elements. The accumulator receives the
results from each multiplier and sends the accumulated result
to the partial result buffer. The results of the MCs within a
row are accumulated to yield one mitigated probability.

Figure 6(b) illustrates an example of the MC processing w0.
The values 1.1 and 1.3 correspond to the sub-coordinates (0, 0)
and (0, 0) of (s0, s0) in Figure 5, respectively. The multiplica-
tion result 1.4 is reused to compute mitigation matrix elements
within w0. After obtaining the values of (s0, s0) ∼ (s0, s3), we
perform multiplication with noisy probabilities and accumulate
the results to obtain the mitigated result of w0.

V. EVALUATION

A. Evaluation Setup

Hardware implementation. We develop DyREM accel-
erator using Xilinx High-Level Synthesis (HLS) C++ and
implement it with Vitis 2023.1. We evaluate its hardware
performance on the Xilinx U50 FPGA, operating at 300 MHz.

Benchmarks. The benchmarks include Variational Quan-
tum Eigensolver (VQE) [12], Quantum Approximate Opti-
mization Algorithm (QAOA) [13], Feedback-Based Quantum
Optimization (FALQON) [15], and Deutsch-Jozsa (DJ) [14]
algorithms, with two layers set for both VQE and QAOA.

Baselines. We compare DyREM with state-of-the-art read-
out error mitigation methods, including Mthree [5], SpREM

[10], IBU [6] and QuFEM [7]. For Mthree, SpREM, and IBU,
we set the Hamming distance to 3. The convergence tolerance
of IBU is set to 10−4. The iteration number and pruning
threshold of QuFEM are set to 2 and 10−4. The window size
of DyREM is set to 4 to achieve a high data reuse rate.

Evaluation platform. We perform error mitigation experi-
ments on the 136-qubit Quafu [16] quantum platform, where
the readout error rate is 4.5%. We utilize QuFEM [7] to
perform qubit partition and mitigation matrix characterization,
with the number of qubits in a group set to 2. We implement
Mthree [5] and IBU [6] on NVIDIA A100 GPU (using
cuBLAS v12.4 and JAX-GPU v0.4.13, respectively). QuFEM
is a software-friendly approach, and we implement it on an
AMD EPYC 9554 64-core CPU (using NumPy v1.24.3). We
implement SpREM accelerator on the Xilinx U50 FPGA using
HLS C++, operating at 300 MHz.

B. Evaluation of Hardware Performance

Table I shows the average hardware performance compari-
son of DyREM with baselines, evaluated on the VQE, QAOA,
and DJ algorithms, using 16, 20, 24, and 28 qubits.

Latency: DyREM achieves a geometric average speedup
of 9.6× ∼ 2000× over baselines. Such a high speedup
compared to conventional computing platforms (CPU and
GPU) is attributed to the specialized computational architec-
ture, which effectively detects and avoids redundant operations
while generating the mitigation matrix. Although SpREM [10]
exploits the Hamming sparsity to avoid operations involving
zero values, it fails to eliminate redundant computations based
on the noisy distribution. In contrast, DyREM compresses the
mitigation matrix based on the output sparsity and detects
redundant operations, achieving a maximum speedup of 73.8×
in the VQE algorithm compared to SpREM.

Q-throughput: We define q-throughput, measured in states
per second (states/s), as a metric to evaluate mitigation per-
formance. The geometric average q-throughput of DyREM for
VQE, QAOA, and DJ algorithms reaches 4.2 × 106 states/s,
3.5× 106 states/s, and 5.3× 106 states/s, representing an im-
provement over baselines of 2.4× ∼ 2726×, 2.3× ∼ 2420×,
and 1.5× ∼ 2002×, respectively. In particular, DyREM
achieves 2.4×, 2.3×, and 1.5× mitigation performance im-
provements over the custom accelerator SpREM [10]. Rather
than relying on external memory to obtain the mitigation
matrix (i.e., SpREM), DyREM utilizes the downsampled ma-
trices to calculate the mitigation matrix on-chip. This strategy
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effectively reduces the bandwidth demand and improves the
utilization of compute units, thereby enhancing throughput.

C. Evaluation of Fidelity

Although DyREM demonstrates outstanding hardware per-
formance, it does not compromise on mitigation accuracy.
Figure 7 illustrates the fidelity improvement of DyREM over
the baselines. DyREM achieves an average fidelity improve-
ment of 1.15×, 1.13×, 1.09×, and 1.03× over Mthree [5],
SpREM [10], IBU [6], and QuFEM [7], respectively. The
improvement comes from the fact that DyREM confines the
mitigation space and utilizes the group matrices that consider
the crosstalk. Conversely, Mthree and IBU use 2×2 mitigation
matrices to construct the full-dimensional tensored mitigation
matrix, failing to consider crosstalk between qubits. SpREM
sets a large number of elements in the mitigation matrix to
zero using Hamming distance, introducing system errors and
reducing mitigation accuracy. Compared to QuFEM, DyREM
confines the mitigation within the noise space, facilitating the
convergence of noise probabilities towards ideal probabilities.

D. Comparison with SpREM

Figure 8 presents the mitigation performance comparison
between SpREM [10] and DyREM on the DJ algorithm, with
the number of qubits ranging from 10 to 50.

Latency and memory usage. Figure 8(a) shows the la-
tency and memory usage comparison between SpREM [10]
and DyREM. Based on nonzero state-oriented computation,
DyREM achieves linear time and space complexity. For in-
stance, in the 50-qubit DJ algorithm, DyREM requires only
0.083 seconds of latency and 25.4 KB of memory, whereas
SpREM fails to output the mitigation results. The scalability of
DyREM stems from the on-chip generation of the mitigation
matrix, which circumvents the limitations imposed by finite
bandwidth. In contrast, SpREM relies on reading the mitiga-
tion matrix from off-chip memory, where the matrix size grows
exponentially with the number of qubits, making bandwidth a
bottleneck that limits its fast mitigation.

Data transfer. Figure 8(b) compares the data transfer
volume between SpREM [10] and DyREM. The data transfer
volume of DyREM is linearly increased with the number
of qubits, from 0.63 KB (10-qubit) to 37.8 KB (50-qubit),
while SpREM exhibits exponential complexity. This is because
DyREM only needs to retrieve the measured qubits and
noisy distribution from off-chip memory and calculates the
mitigation matrix on-chip. Conversely, the mitigation matrix
for SpREM is too large to store on-chip (e.g., 9.1 TB for 30-
qubit), leading to increased data transfer volume.

VI. RELATED WORK

Matrix-based readout error mitigation. Mthree [5] and
SpREM [10] exploit Hamming distance to compress the
mitigation matrix. To implement scalable mitigation, IBU [6]
utilizes a series of 2×2 qubit-independent sub-mitigation ma-
trices to construct the mitigation matrix. To improve fidelity,
CTMP [17] leverages Markovian noise models to mitigate cor-
related crosstalk errors. QuFEM [7] formulates the mitigation
process as a tensor product using grouping matrices.

Other error mitigation techniques. Jigsaw [9] executes
quantum programs in two models and employs a Bayesian
post-processing step to mitigate measurement errors. HAM-
MER [18] combines the structure of quantum errors with
a reclassification protocol to improve fidelity. Q-BEEP [19]
introduces a Hamming spectrum model for characterizing
localized and distant clustered Hamming errors. QuTracer [1]
traces the states of qubit subsets to mitigate both gate and
measurement errors.

VII. CONCLUSION

This paper proposes DyREM, a co-design approach that
dynamically mitigates readout error with an embedded ac-
celerator. The key innovation lies in exploiting the inherent
sparsity in the nonzero probability distribution of quantum
states and calculating the tensor product on an embedded
accelerator. To adapt to varying measured qubits, our dataflow
dynamically downsamples the original mitigation matrix. We
then design DyREM architecture that flexibly gates the re-
dundant computation of nonzero quantum states. DyREM
achieves remarkable improvements compared to other readout
mitigation methods.
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